Skip to main content
Log in

Turbulent Heat and Fluid Flow over a Two-Dimensional Hill

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Experimental investigation has been made on the flow and thermal fields over a heated two-dimensional hill with a cosine-squared shape. The detailed turbulent characteristics are measured by a backscatter-type two-component LDV, a PIV system, a fine thermocouple and a cold-wire probe. In the reverse-flow region on the leeward side of the hill, the turbulence intensities and the Reynolds shear stress show much larger values than in a canonical wall-bounded shear flow. The mean temperature maintains a relatively high value below the location where the horizontal mean velocity rapidly decreases. At the outer edge of the reverse-flow region, there exists a second maximum intensity of temperature fluctuations. The instantaneous temperature waveforms near the heated surface show very large amplitude consisting of high-frequency fluctuations superimposed on the low-frequency motions. Simultaneous measurement of velocity and temperature is also done using a combination of a two-component LDV and a fine-wire thermocouple together with digital response compensation. In the downstream region of the hill, the horizontal and vertical turbulent heat fluxes become maximum at the hill-top height, and tend to diffuse in the vertical direction. On the other hand, in the reverse-flow region formed behind the hill, both of the heat fluxes decrease remarkably. In particular, it is worth noting that the horizontal turbulent heat flux near the surface becomes opposite in sign to that in the forward flow region. This is mainly due to the reversal of the mean flow direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Britter, R.E., Hunt, J.C.R., Richards, K.J.: Air flow over a two-dimensional hill: studies of velocity speed-up, roughness effects and turbulence. Q. J. R. Meteorol. Soc. 107, 91–110 (1981)

    Article  ADS  Google Scholar 

  2. Gong, W., Ibbetson, A.: A wind tunnel study of turbulent flow over model hills. Boundary-Layer Meteorol. 49, 113–148 (1989)

    Article  ADS  Google Scholar 

  3. Ferreira, A.D., Silva, M.C.G., Viegas, D.X., Lopes, A.G.: Wind tunnel simulation of the flow around two-dimensional hills. J. Wind Eng. Ind. Aerodyn. 38, 109–122 (1991)

    Article  Google Scholar 

  4. Almeida, G.P., Durão, D.F.G., Heitor, M.V.: Wake flows behind two-dimensional model hills. Exp. Therm. Fluid Sci. 7, 87–101 (1993)

    Article  ADS  Google Scholar 

  5. Ferrira, A.D., Lopes, A.M.G., Viegas, D.X., Sousa, A.C.M.: Experimental and numerical simulation of flow around two-dimensional hills. J. Wind Eng. Ind. Aerodyn. 54–55, 173–181 (1995)

    Article  Google Scholar 

  6. Kim, H.G., Lee, C.M., Lim, H.C., Kyong, N.H.: An experimental and numerical study on the flow over two-dimensional hills. J. Wind Eng. Ind. Aerodyn. 66, 17–33 (1997)

    Article  Google Scholar 

  7. Ross, A.N., Arnold, S., Vosper, S.B., Mobbs, S.D., Dixon, N., Robins, A.G.: A comparison of wind-tunnel experiments and numerical simulations of neutral and stratified flow over a hill. Boundary-Layer Meteorol. 113, 427–459 (2004)

    Article  ADS  Google Scholar 

  8. Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Hattori, Y., Tanaka, N.: A wind tunnel experiment of inflow turbulence effects on development of turbulent boundary layer over a steep hill. In: Proc. 17th Int. Symposium on Transport Phenomena, Toyama, CD-ROM (2006)

  10. Loureiro, J.B.R., Pinho, F.T., Silva Freire, A.P.: Near wall characterization of the flow over a two-dimensional steep smooth hill. Exp. Fluids 42, 441–457 (2007)

    Article  Google Scholar 

  11. Houra, T., Tagawa, M., Nagano, Y.: Turbulence measurements of flows over a heated two-dimensional hill. In: Proc. 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conf., Vancouver, 8–12 July 2007

  12. Hunt, J.C.R., Snyder, W.H.: Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech. 96, 671–704 (1980)

    Article  ADS  Google Scholar 

  13. Castro, I.P., Snyder, W.H.: A wind tunnel study of dispersion from sources downwind of three-dimensional hills. Atmos. Environ. 16, 1869–1887 (1982)

    Article  Google Scholar 

  14. Ishihara, T., Hibi, K., Oikawa, S.: A wind tunnel study of turbulent flow over a three-dimensional steep hill. J. Wind Eng. Ind. Aerodyn. 83, 95–107 (1999)

    Article  Google Scholar 

  15. Simpson, R.L., Long, C.H., Byun, G.: Study of vortical separation from an axisymmetric hill. Int. J. Heat Fluid Flow 23, 582–591 (2002)

    Article  Google Scholar 

  16. Byun, G., Simpson, R.L., Long, C.H.: Study of vortical separation from three-dimensional symmetric bumps. AIAA J. 42, 754–765 (2004)

    Article  ADS  Google Scholar 

  17. Taylor, P.A., Mason, P.J., Bradley, E.F.: Boundary-layer flow over low hills. Boundary-Layer Meteorol. 39, 107–132 (1987)

    Article  ADS  Google Scholar 

  18. Kaimal, J.C., Finnigan, J.J.: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, New York (1994)

    Google Scholar 

  19. Raupach, M.R., Finnigan, J.J.: The influence of topography on meteorological variables and surface–atmosphere interactions. J. Hydrol. 190, 182–213 (1997)

    Article  Google Scholar 

  20. Belcher, S.E., Hunt, J.C.R.: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 30, 507–538 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jackson, P.S., Hunt, J.C.R.: Turbulent wind flow over a low hill. Q. J. R. Meteorol. Soc. 101, 929–955 (1975)

    Article  ADS  Google Scholar 

  22. Hunt, J.C.R., Leibovich, S., Richards, K.J.: Turbulent shear flows over low hills. Q. J. R. Meteorol. Soc. 114, 1435–1470 (1988)

    Article  ADS  Google Scholar 

  23. Eaton, J.K., Johnston, J.P.: Turbulent flow reattachment: an experimental study of the flow and structure behind a backward-facing step. Rep. MD-39. Thermosciences Division, Dept. Mech. Engng, Stanford Univ. (1980)

  24. Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–374 (1997)

    Article  MATH  ADS  Google Scholar 

  25. Loureiro, J.B.R., Alho, A.T.P., Silva Freire, A.P.: The numerical computation of near-wall turbulent flow over a steep hill. J. Wind Eng. Ind. Aerodyn. 96, 540–561 (2008)

    Article  Google Scholar 

  26. Snyder, W.H.: Fluid modeling of pollutant transport and diffusion in stably stratified flows over complex terrain. Annu. Rev. Fluid Mech. 17, 239–266 (1985)

    Article  ADS  Google Scholar 

  27. Castro, I.P., Apsley, D.D.: Flow and dispersion over topography: a comparison between numerical and laboratory data for two-dimensional flows. Atmos. Environ. 31, 839–850 (1997)

    Article  Google Scholar 

  28. Wood, N.: The onset of separation in neutral, turbulent flow over hills. Boundary-Layer Meteorol. 76, 137–164 (1995)

    Article  ADS  Google Scholar 

  29. Albrecht, H.-E., Borys, M., Damaschke, N., Tropea, C.: Laser Doppler and Phase Doppler Measurement Techniques. Springer, Berlin, p 738 (2003)

    Google Scholar 

  30. Spalart, P.R.: Direct simulation of a turbulent boundary layer up to R θ  = 1410. J. Fluid Mech. 187, 61–98 (1988)

    Article  MATH  ADS  Google Scholar 

  31. Tagawa, M., Nagaya, S., Ohta, Y.: Simultaneous measurement of velocity and temperature in high-temperature turbulent flows: a combination of LDV and a three-wire temperature probe. Exp. Fluids 30, 143–152 (2001)

    Article  Google Scholar 

  32. Tagawa, M., Kato, K., Ohta, Y.: Response compensation of fine-wire temperature sensors. Rev. Sci. Instrum. 76, 094904 (2005)

    Article  ADS  Google Scholar 

  33. ANSI/ASME PTC 19.1-2005: Test Uncertainty. ASME, New York (2006)

    Google Scholar 

  34. Nagano, Y., Tagawa, M.: Statistical characteristics of wall turbulence with a passive scalar. J. Fluid Mech. 196, 157–185 (1988)

    Article  MATH  ADS  Google Scholar 

  35. Nagano, Y., Sato, H., Tagawa, M.: Structure of heat transfer in the thermal layer growing in a fully developed turbulent flow. In: Durst, F., et al. (eds.) Turbulent Shear Flows, vol. 9, pp. 343–364. Springer, Berlin (1995)

    Google Scholar 

  36. Farge, M., Kevlahan, N., Perrier, V., Goirand, È.: Wavelets and turbulence. Proc. IEEE 84, 639–669 (1996)

    Article  Google Scholar 

  37. Nagano, Y., Houra, T.: High-order moments and spectra of velocity fluctuations in adverse-pressure-gradient turbulent boundary layer. Exp. Fluids 33, 22–30 (2002)

    Google Scholar 

  38. Farge, M.: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395–457 (1992)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Houra.

Additional information

This work was supported by grant-in-aid for scientific research (S) (No. 17106003) from the Japan Society for the Promotion of Science (JSPS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houra, T., Nagano, Y. Turbulent Heat and Fluid Flow over a Two-Dimensional Hill. Flow Turbulence Combust 83, 389–406 (2009). https://doi.org/10.1007/s10494-009-9227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-009-9227-x

Keywords

Navigation