Skip to main content
Log in

Homogenization Based LES for Turbulent Combustion

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this work we propose a novel methodology for performing Large Eddy Simulations (LES) of premixed, non-premixed and partially premixed laminar and turbulent flames. The motivation behind this study is the need for more accurate and flexible LES computations of increasingly complex engineering applications, for which current LES models are limited. The main drawback of present LES methods for reactive flows is that most of the chemical activity, and thus also most of the exothermicity, occurs on the subgrid scales, and is hence subject to modeling using only information about the resolved scale flow. Reasonable results have been achieved in several studies with present LES models but improved accuracy, flexibility and reliability is needed. Here, we use a homogenization-based approach based on a multi-scale expansion technique to convert the reactive Navier–Stokes equations, with finite rate chemistry, into a cascade of equations for different scales. The equations of motion for the large-scale dependent variable dynamics are explicitly simulated, whereas the equations of motion for the small-scale dependent variable dynamics are simplified by reducing the spatial dimensions from three to one, thus permitting affordable simulations in a grid within the grid approach. Presently, the methodology is limited to low Ma number variable density flows, but can be extended to high Ma number reactive flows. This method has some similarities with the LES–LEM and the TLS models of Menon et al., but differs in some important aspects. The model developed is here applied to a bluff-body stabilized flame and comparisons with both experimental data and conventional flamelet and finite rate chemistry LES models are made. The results show that the performance of this model is as good or better than any of the other models, and to a reasonable computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  2. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  3. Grinstein, F.F., Margolin, L., Rider, B. (eds.): In: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press, Cambridge (2007)

  4. Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large eddy simulation. Phys. Fluids 12, 1629 (2000). doi:10.1063/1.870414

    Article  ADS  Google Scholar 

  5. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Edwards, Philadelphia (2001)

    Google Scholar 

  6. Flohr, P., Pitsch, H.: A turbulent flame speed closure model for LES of industrial burner flows. In: Proc. of the Summer Program. Center of Turbulence Research (2000)

  7. Fureby, C., Grinstein, F.F., Li, G., Gutmark, E.: An experimental and computational study of a multi-swirl gas turbine combustor. In: 31st Int. Symp. on Comb., p. 3107 (2005)

  8. Sankaran, V., Menon, S.: Subgrid combustion modeling of 3D premixed flames in the thin-reaction-zone regime. In: Proc. of the 30th Int. Symp. on Comb., p. 575 (2005)

  9. Kemenov, K., Menon, S.: Two level simulation of high Reynolds number non-homogeneous turbulent flows. AIAA 2003–0084 (2003)

  10. Hawkes, E.R., Cant, R.S.: Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame 126, 1617 (2001). doi:10.1016/S0010-2180(01)00273-5

    Article  Google Scholar 

  11. Nogenmyr, K.J., Petersson, P., Bai, X.S., Nauert, A., Olofsson, J., Brackman, C., Seyfried, H., Zetterberg, J., Li, Z.S., Richter, M., Dreizler, A., Linne, M., Aldén, M.: Large eddy simulation and experiments of stratified lean premixed methane/air flames. Proc. Combust. Inst. 31, 1467 (2007). doi:10.1016/j.proci.2006.08.038

    Article  Google Scholar 

  12. Fureby, C.: Comparison of flamelet and finite rate chemistry LES for premixed turbulent combustion. AIAA 2007–1413 (2007)

  13. Nogenmyr, K., Peterson, P., Bai, X.S., Aldén, M., Fureby, C.: A comparative study of LES turbulent combustion models applied to a low swirl lean premixed burner. AIAA-2008 0513 (2008)

  14. Eggenspieler, G., Menon, S.: Combustion and emission modelling near lean blow-out in a gas turbine engine. Prog. Comput. Fluid Dyn. 5, 281 (2005). doi:10.1504/PCFD.2005.007062

    Article  Google Scholar 

  15. Foias, C., Manley, O., Temam, R.: Modeling the interaction of small and large eddies in two-dimensional turbulent flows. Math. Model. Numer. Anal. 22, 93 (1988)

    MATH  MathSciNet  Google Scholar 

  16. Domaradzki, J.A., Adams, N.A.: Direct modeling of subgrid scales of turbulence in large eddy simulations. J. Turbul. 3, 24 (2002)

    Article  ADS  Google Scholar 

  17. Speziale, C.G., Erlbacher, G., Zang, T.A., Hussaini, M.Y.: The subgrid scale modeling of compressible turbulence. Phys. Fluids 31, 940 (1988). doi:10.1063/1.866778

    Article  ADS  Google Scholar 

  18. Grinstein, F.F., Kailasanath, K.K.: Three dimensional numerical simulations of unsteady reactive square jets. Combust. Flame 100, 2 (1994). doi:10.1016/0010-2180(94)00095-A

    Article  Google Scholar 

  19. Bensow, R., Fureby, C.: On the justification and extension of mixed models in LES. J Turbul. 8, N54 (2006)

    MathSciNet  Google Scholar 

  20. Fureby, C.: On LES and DES of wall bounded flows. Ercoftac Bulletin No 72, March Issue (2007)

  21. Duwig, C.: Study of filtered flamelet formulation for large eddy simulation of premixed turbulent flames. Flow Turbul. Combust. 151, 85–103 (2007). doi10.1007/s10494-9107-1

    Google Scholar 

  22. Fureby, C.: A fractal flame wrinkling large eddy simulation model for premixed turbulent combustion. In: Proc. of the 30th Int. Symp. on Comb., p. 593 (2004)

  23. Hawkes, E.R., Cant, R.S.: A flame surface density approach to large eddy simulation of premixed turbulent combustion. In: Proc. of the 28th Int. Symp. on Comb., p. 51 (2000)

  24. Doming, P., Vervish, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD–PDF subgrid scale closure with FPI tabulated chemistry. Combust. Flame 143, 566 (2005). doi:10.1016/j.combustflame.2005.08.023

    Article  Google Scholar 

  25. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843 (2000). doi:10.1063/1.870436

    Article  ADS  Google Scholar 

  26. Grimaji, S.S.: Assumed β-PDF model for turbulent mixing: validation and extension to multiple scalar mixing. Combust. Sci. Technol. 78, 177 (1991). doi:10.1080/00102209108951748

    Article  Google Scholar 

  27. Ertesvåg, I.S., Magnussen, B.F.: The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 149, 213 (2000). doi:10.1080/00102200008935784

    Article  Google Scholar 

  28. Karlsson, J.A.J.: Modeling Auto-ignition, Flame Propagation and Combustion in Non-stationary Turbulent Sprays. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden (1995)

  29. Boger, M., Veynante, D., Boughanem, H., Trouve, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. In: Proc. of the 27th Int. Symp. on Comb., p. 917 (1998)

  30. Knikker, R., Veynante, D.: A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 16, L91 (2004). doi:10.1063/1.1780549

    Article  ADS  Google Scholar 

  31. Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent shear layer formed at a rearward facing step. In: 27th Int. Symp. on Comb., p. 899 (1998)

  32. North, G.L., Santavicca, D.A.: The fractal nature of premixed turbulent flames. Combust. Sci. Technol 72, 215 (1990). doi:10.1080/00102209008951648

    Article  Google Scholar 

  33. Düsing, K.M.: Large Eddy Simulation Turbulenter Vormischflammen. Ph.D. Thesis, Darmstadt University of Technology (2003)

  34. Westbrook, C., Dryer, F.: Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27, 31 (1981). doi:10.1080/00102208108946970

    Article  Google Scholar 

  35. Grimaji, S.S.: Assumed β-PDF model for turbulent mixing: validation and extension to multiple scalar mixing. Combust. Sci. Technol. 78, 177 (1991). doi:10.1080/00102209108951748

    Article  Google Scholar 

  36. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843 (2000). doi:10.1063/1.870436

    Article  ADS  Google Scholar 

  37. Karlsson, J.A.J.: Modeling auto-ignition, flame propagation and combustion in non-stationary turbulent sprays. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden (1995)

  38. Ertesvåg, I.S., Magnussen, B.F.: The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 149, 213 (2000). doi:10.1080/00102200008935784

    Article  Google Scholar 

  39. Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  40. Svanstedt, N., Wellander, N.: Multiscale homogenization of the Navier Stokes equation. In: Multiscale Methods in Science and Engineering. Lecture Notes in Comp. Sci. Eng., vol. 44, p. 263 (2005)

  41. Rebollo, T.C., Coronil, D.F., Gallego, F.O.: Helicity in turbulence modeling by homogenization. INRIA Report No 1486 (1991)

  42. Fureby, C., Persson, L., Svanstedt, N.: On homogenization based methods for large eddy simulation. J. Fluids Eng. 124, 892 (2002). doi:10.1115/1.1516577

    Article  Google Scholar 

  43. Adams, N.A., Stolz, S.: Deconvolution methods for subgrid-scale approximation in LES. In: Geurts, B.J. (ed.) Modern Simulation Strategies for Turbulent Flows. Edwards, Philadelphia, p. 21 (2001)

    Google Scholar 

  44. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to CFD using object oriented techniques. Comput. Phys. 12, 629 (1997)

    Google Scholar 

  45. Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525 (1983). doi:10.2514/3.8284

    Article  MATH  ADS  Google Scholar 

  46. Lin, W., Hernandez-Pérez, F.E, Groth, C.P.T., Gülder, Ö.L.: Comparison of subfilter scale models for LES of turbulent premixed flames. AIAA 2008–1048 (2008)

  47. Eswaran, V., Pope, S.B.: An examination of forcing in direct numerical simulation of turbulence. Comput. Fluids 16, 257 (1988). doi:10.1016/0045-7930(88)90013-8

    Article  MATH  ADS  Google Scholar 

  48. Pitz, R.W., Daily, J.W.: Experimental study of combustion in a turbulent free shear layer formed at a rearward facing step. AIAA J. 21, 1565 (1983). doi:10.2514/3.8290

    Article  ADS  Google Scholar 

  49. Pitz, R.W., Daily, J.W.: Experimental study of combustion: the turbulent structure of a reacting shear layer formed at a rearward facing step. NASA Contractor Report 165427 (1981)

  50. Ganji, A.R., Sawyer, R.F.: An experimental study of the flow field and pollutant formation in a two dimensional premixed. Turbulent Flame. AIAA J. 18, 817 (1980). doi:10.2514/3.50823

    Article  ADS  Google Scholar 

  51. Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent shear layer formed at a rearward facing step. In: 27th Int. Symp. on Comb., p. 899 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer Fureby.

Additional information

Track: SI DNS and LES of Reactive Flows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fureby, C. Homogenization Based LES for Turbulent Combustion. Flow Turbulence Combust 84, 459–480 (2010). https://doi.org/10.1007/s10494-009-9219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-009-9219-x

Keywords

Navigation