Skip to main content
Log in

Behavior of Moderately Oscillating Sooting Methane-Air Diffusion Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The properties of oscillating sooting methane air diffusion flames have been investigated by different methods in order to examine instationary effects in these flames. The pulsation has been induced by modulation of the methane gas flow with an amplitude of 30% of the mean gas flow. The focus of the investigations is on the flame oscillated at 10 Hz, which is close to the frequency of self-induced flickering. Additionally, further measurements at varying frequencies have been performed to determine the transition towards steady-state behavior. Different measurement techniques allowed the determination of soot volume fractions, particle number densities, mean particle radii, particle temperatures, and OH*-chemiluminescence. The oscillating flame shows strong instationary effects and increased soot concentrations compared to the steady-state flame of equivalent mean fuel flow. Accompanying calculations are based on a kinematic analysis of diffusion flames. The model can sufficiently well reproduce the flame height and the contour of the flame. Furthermore, the model describes the asymmetric course of the OH*-emission signal. A simple numerical approach is deduced that explains qualitatively the strong variations of the soot volume fraction in an oscillating flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamins, A., Yang, J.C., Kashiwagi, T.: An experimental investigation of the pulsation frequency of flames. Proc. Combust. Inst. 24, 1695–1702 (1993)

    Google Scholar 

  2. Cetegen, B.M., Ahmed, T.A.: Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93, 157–184 (1993). doi:10.1016/0010-2180(93)90090-P

    Article  Google Scholar 

  3. Shaddix, C.R., Harrington, J.E., Smyth, K.C.: Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame. Combust. Flame 99, 723–732 (1994). doi:10.1016/0010-2180(94)90067-1

    Article  Google Scholar 

  4. Ezekoye, O.A., Martin, K.M., Bisetti, F.: Pulsed flow modulation of soot production in a laminar jet-diffusion flame. Proc. Combust. Inst. 30, 1485–1492 (2005). doi:10.1016/j.proci.2004.08.200

    Article  Google Scholar 

  5. Strayer, B.A., Dunn-Rankin, D., Jabbari, F.: A comparison between frequency- and amplitude-modulated adaptive control of a non-premixed flame. Proc. Combust. Inst. 27, 1247–1254 (1999)

    Google Scholar 

  6. Kim, T.K., Park, J., Shin, H.D.: Mixing mechanism near the nozzle exit in a tone excited non-premixed jet flame. Combust. Sci. Technol. 89(1–4), 83–100 (1993). doi:10.1080/00102209308924104

    Article  Google Scholar 

  7. Saito, M., Sato, M., Nishimura, A.: Soot suppression by acoustic oscillated combustion. Fuel 77(9/10), 973–978 (1998)

    Article  Google Scholar 

  8. Papadopoulos, G., Bryant, R.A., Pitts, W.M.: Flow characterization of flickering methane/air diffusion flames using particle imaging velocimetry. Exp. Fluids 33, 472–481 (2002)

    Google Scholar 

  9. Geitlinger, H., Streibel, T., Suntz, R., Bockhorn, H.: Two-dimensional imaging of soot volume fractions, particle number densities and particle sizes in laminar and turbulent diffusion flames. Proc. Combust. Inst. 27, 1613–1621 (1999)

    Google Scholar 

  10. Bockhorn, H., Geitlinger, H., Jungfleisch, B., Lehre, T., Schön, A., Streibel, T., et al.: Progress in charaterization of soot formation by optical methods. Phys. Chem. Chem. Phys. 4(15), 3780–3793 (2002). doi:10.1039/b201071b

    Article  Google Scholar 

  11. Köylü, Ö.: Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: implications for soot surface growth and total emissivity. Combust. Flame 109, 488 (1996). doi:10.1016/S0010-2180(96)00179-4

    Article  Google Scholar 

  12. Thomson, K.A., Snelling, D.R., Smallwood, G.J., Liu, F.: Laser induced incandescence measurements of soot volume fraction and effective particle size in a laminar co-annular non-premixed methane/air flame at pressures between 0.5–4.0 MPa. Appl. Phys. B 83(3), 469–475 (2006). doi:10.1007/s00340-006-2198-x

    Article  ADS  Google Scholar 

  13. Hentschel, J., Suntz, R., Bockhorn, H.: Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure. Appl. Opt. 44(31), 6673–6681 (2005). doi:10.1364/AO.44.006673

    Article  ADS  Google Scholar 

  14. Dasch, C.J.: One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt. 31(8), 1146–1152 (1992)

    Article  ADS  Google Scholar 

  15. Burke, S.P., Schumann, T.E.W.: Diffusion flames. Ind. Eng. Chem. 20, 998–1004 (1928). doi:10.1021/ie50226a005

    Article  Google Scholar 

  16. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids, p. 582. McGraw-Hill, New York (1987)

    Google Scholar 

  17. Hettel, M.: Analytical and numerical investigations of the dynamics of premixed flames and their interaction with ring-vortices. PhD thesis, University of Karlsruhe (TH) (2007)

  18. Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy a Combust. Sci. 10, 319–339 (1984)

    Article  Google Scholar 

  19. Appel, J.: Numerical simulation of soot formation in the hydrocarbon combustion. Ph.D. thesis, University of Karlsruhe (TH) (2000)

  20. Schön, A., Streibel, T., Suntz, R., Bockhorn, H.: Numerical and experimental analysis of soot formation in laminar diffusion flames along selected particle tracks. In: 29th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 2399 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Charwath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charwath, M., Hentschel, J., Bockhorn, H. et al. Behavior of Moderately Oscillating Sooting Methane-Air Diffusion Flames. Flow Turbulence Combust 82, 553–569 (2009). https://doi.org/10.1007/s10494-008-9197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9197-4

Keywords

Navigation