Skip to main content
Log in

Measurement in a Zero-Pressure Gradient Turbulent Boundary Layer with Forced Thermal Convection

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A subsonic zero-pressure gradient turbulent boundary layer developing on a uniformly heated surface at a Reynolds number in the range of 3, 560 ≤ Re θ  ≤ 5,360 was investigated. Particle-image velocimetry measurements were performed at various positions in the streamwise direction for several wind-tunnel speeds and for different wall excess temperatures to show the thermal convection effects to expand the boundary-layer thickness δ 0.99 and to enlarge the turbulence intensities in the log-law and wake region. The mean velocity profiles are found to be self-preserving. The inclination of large-scale ramp-like vortex packets increases to higher characteristic angles, i.e., the mean angles are enlarged by approximately 5–10°. Hairpin-like vortex structures originating from the near-wall region seem to undergo higher climbing rates in the wall-normal direction causing the above mentioned significant changes in the boundary-layer thickness δ 0.99 and the strongly increased distributions of turbulence intensities in the wake region of the boundary layer. Changes in the distributions of the skewness and flatness of the probability density function (PDF) of the streamwise fluctuations corroborate these findings. The two-point correlation distribution of the streamwise velocity fluctuations R uu is increased for wall distances y/δ 0.99 = 0.1 to y/δ 0.99 = 0.75 indicating the existence of coherent structures in higher regions of the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adrian, R.J., Christensen, K.T., Liu, Z.-C.: Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275–290 (2000)

    Article  Google Scholar 

  2. Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex organization and structure in the outer region of a turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Antonia, R.A., Danh, H.Q., Prabhu, A.: Response of a turbulent boundary layer to a step change in surface heat flux. J. Fluid Mech. 80, 153–177 (1977) April

    Article  ADS  Google Scholar 

  4. Barrett, M.J., Hollingsworth, D.K.: Heat transfer in turbulent boundary layers subjected to free stream turbulence - Part I: Experimental results. J. Turbomach. 125(2), 232–241 (2003)

    Article  Google Scholar 

  5. Brown, G.L., Thomas, A.S.W.: Large strructure in a turbulent boundary layer. Phys. Fluids 20(10), 243–252 (1977)

    Article  ADS  Google Scholar 

  6. Carper, M.A., Porte-Agel, F.: The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J. Turbul. 5(1), 1–24 (2004)

    Article  Google Scholar 

  7. Cheng, R.K., Ng, T.T.: Some aspects of strongly heated turbulent boundary layer flow. Phys. Fluids 25, 1333–1341 (1982) Augustus

    Article  ADS  Google Scholar 

  8. Christensen, K.T.: Experimental investigation of acceleration and velocity fields in turbulent channel flow. Dissertation, University Of Illinois, Urbana-Champaign (2001)

  9. DeGraaff, D.B., Webster, D.R., Eaton, J.K.: The effect of Reynolds number on boundary layer turbulence. Exp. Therm. Fluid Sci. 18, 341–346 (1999)

    Article  Google Scholar 

  10. Fernholz, H.H., Krause, E., Nockemann, M., Schober, M.: Comparative measurements in the canonical boundary layer at \(Re_\Theta \leq 6 \cdot 10^4\) on the wall of the German–Dutch windtunnel. Phys. Fluids 7, 1275–1281 (1995)

    Article  ADS  Google Scholar 

  11. Fulachier, L., Anselmet, F., Borghi, R., Paranthoen, P.: Influence of density variations on the structure of low-speed turbulent flows - A report on Euromech 237. J. Fluid Mech. 203, 577–593 (1989)

    Article  ADS  Google Scholar 

  12. Ganapathisubramani, B., Hutchins, N., Hambleton, W.T., Longmire, E.K., Marusic, I.: Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 57–80 (2005)

    Article  MATH  ADS  Google Scholar 

  13. Große, S., Schröder, W.: Mean wall-shear stress measurements using the micro-pillar shear-stress sensor MPS3. Meas. Sci. Technol. (2007) (under review)

  14. Große, S., Schröder, W., Brücker, C.: Nano-newton drag sensor based on flexible micro-pillars. Meas. Sci. Technol. 17, 2689–2697 (2006)

    Article  ADS  Google Scholar 

  15. Hambleton, W.T., Hutchins, N., Marusic, I.: Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boudary layer. J. Fluid Mech. 422, 1–54 (2006)

    Google Scholar 

  16. Head, M.R., Bandyopadhyay, P.: New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297–338 (1981)

    Article  ADS  Google Scholar 

  17. Heuer, W.D.C., Marusic, I.: Turbulence wall-shear stress sensor for the atmospheric surface layer. Meas. Sci. Technol. 16(8), 1644–1649 (2005)

    Article  ADS  Google Scholar 

  18. Hommema, S.E., Adrian, R.J.: Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorol. 147–170, 106 (2003)

    Google Scholar 

  19. Kim, K.C., Yoon, S.Y., Kim, S.M., Chun, H.H., Lee, I.: An orthogonal-plane PIV technique for the investigations of three-dimensional vortical structures in a turbulent boundary layer flow. Exp. Fluids 40, 876–883 (2006)

    Article  Google Scholar 

  20. Kong, H., Choi, H., Lee, J.S.: Direct numerical simulation of turbulent thermal boundary layers. Phys. Fluids 12(10), 2555–2568 (2000)

    Article  ADS  Google Scholar 

  21. Matsushita, H., Mizomoto, M., Ikia, S.: Structure of turbulent boundary layer along a flat surface with high wall temperature. T. Japan. Soc. Mech. Eng. 49(439), 646–655 (1983) (in Japanese)

    Google Scholar 

  22. Oberlack, M.: Unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech. 427, 299–328 (2001)

    Article  MATH  ADS  Google Scholar 

  23. Österlund, J.M.: Experimental studies of zero pressure-gradient turbulent boundary-layer flow. Dissertation, Department of Mechanics, Royal Institute of Technology, Stockholm (1999)

  24. Österlund, J.M., Johansson, A.V.: Measurements in a flat plate turbulent boundary layer. In: Proceedings of the 1st International Symposium on Turbulence and Shear Flow Phenomena, TSFP-1, Santa Barbara, CA, Sept. 12–15 (1999)

  25. Perry, A.E., Hoffmann, P.H.: An experimental study of turbulent convective heat transfer from a flat plate. J. Fluid Mech. 77, 355–368 (1976)

    Article  ADS  Google Scholar 

  26. Robinson, S.K.: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601–639 (1991)

    Article  ADS  Google Scholar 

  27. Saddoughi, S.G., Veeravalli, S.V.: Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333–372 (1994)

    Article  ADS  Google Scholar 

  28. Smith, C.R., Metzler, S.P.: The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 27–54 (1983)

    Article  ADS  Google Scholar 

  29. Wardana, I.N.G., Ueda, T., Mizimoto, M.: Structure of turbulent two-dimensional channel flow with strongly heated wall. Exp. Fluids 13, 17–25 (1992)

    Article  Google Scholar 

  30. Wardana, I.N.G., Ueda, T., Mizimoto, M.: Velocity-temperature correlation in strongly heated channel flow. Exp. Fluids 18, 454–461 (1995)

    Article  Google Scholar 

  31. Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in near-wall turbulence. J. Fluid Mech. 387, 353–396 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Große.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Große, S., Schröder, W. Measurement in a Zero-Pressure Gradient Turbulent Boundary Layer with Forced Thermal Convection. Flow Turbulence Combust 81, 131–153 (2008). https://doi.org/10.1007/s10494-007-9101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-007-9101-7

Keywords

Navigation