Skip to main content
Log in

The Flow Structure Produced by Pulsed-jet Vortex Generators in a Turbulent Boundary Layer in an Adverse Pressure Gradient

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The effect of pulsed jet vortex generators on the structure of an adverse pressure gradient turbulent boundary layer flow was investigated. Two geometrically optimised vortex generator configurations were used, co-rotating and counter-rotating. The duty cycle and pulse frequency were both varied and measurements of the skin friction (using hot films) and flow structure (using stereo PIV) were performed downstream of the actuators. The augmentation of the mean wall shear stress was found to be dependent on the net mass flow injected by the actuators. A quasi steady flow structure was found to develop far downstream of the injection location for the highest pulse frequency tested. The actuator near field flow structure was observed to respond very quickly to variations in the jet exit velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernard, A., Dupont, P., Foucaut, J.M., Stanislas, M.: Identification and assessment of flow actuation and control strategies. Technical Report FREP/CN18/MS001101, CNRS-DR18 (2000)

  2. Bernard, A., Dupont, P., Foucaut, J.M., Stanislas, M.: Decelerating boundary layer: a new scaling and mixing length model. AIAA Journal. 41(2), 248–255 (2003)

    ADS  Google Scholar 

  3. Carlier, J., Stanislas, M.: Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143–188 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Cathalifaud, P., Stanislas, M.: Post-processing of PIV data to characterise different vortex generators used for boundary layer control. Technical Report AEROMEMSII/TR/LML/1.1/PC050211-1, LML UMR CNRS 8107, Lille, France, 15 February 2005

  5. Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids 2(5), 765–777 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  6. Compton, D.A., Johnston, J.P.: Streamwise vortex production by pitched and skewed jets in a turbulent boundary layer. AIAA Journal. 30(3), 640–647 (March 1992)

    ADS  Google Scholar 

  7. Foucaut, J.M., Miliat, B., Pérenne, N., Stanislas, M.: Characterisation of different PIV algorithms using the EUROPIV Synthetic Image Generator and real images from a turbulent boundary layer. In: Proceedings of the EUROPIV 2 Workshop on Particle Image Velocimetry, pp. 163–185. Springer (2004)

  8. Godard, G., Stanislas, M.: Control of a decelerating boundary layer. Part 1: optimization of passive vortex generators. Aerosp. Sci. Technol. 10(3), 181–191 (2006)

    Article  Google Scholar 

  9. Godard, G., Stanislas, M.: Control of a decelerating boundary layer. Part 3: optimization of round jets vortex generators. Aerosp. Sci. Technol. 10(6), 455–464 (2006)

    Article  Google Scholar 

  10. Godard, G., Foucaut, J.M., Dupont, P., Stanislas, M.: Optimization of passive and active vortex generators for boundary layer control. Technical Report AEROMEMSII/TR/LML/1.1/ GG040415-1, LML UMR CNRS 8107, Lille, France, 15 April 2004

  11. Godard, G., Foucaut, J.M., Stanislas, M.: Control of a decelerating boundary layer. Part 2: optimization of slotted jets vortex generators. Aerosp. Sci. Technol. 10(5), 394–400 (2006)

    Article  Google Scholar 

  12. Jacobson, S.A., Reynolds, W.C.: Active control of streamwise vortices and streaks in boundary layers. J. Fluid Mech. 360, 179–211 (1998)

    Article  MATH  ADS  Google Scholar 

  13. Johari, H., McManus, K.R.: Visualization of pulsed vortex generator jets for active control of boundary layer separation. AIAA Paper 97-2021 (1997)

  14. Johnston, J.P., Nishi, M.: Vortex generator jets–means for flow separation control. AIAA Journal. 28(6), 989–994 (1990)

    ADS  Google Scholar 

  15. Khan, Z.U., Johnston, J.P.: On vortex generating jets. Int. J. Heat Fluid Flow. 21, 506–511 (2000)

    Article  Google Scholar 

  16. Kosts, J., Foucaut, J.M., Stanislas, M.: Application of double spiv on the near wall turbulence structure of an adverse pressure gradient turbulent boundary layer. In: 6th International Symposium on PIV, Pasadena, California, 21–23 Sept. 2005

  17. Lundell, F.: Pulse-width modulated blowing/suction as a flow control actuator. Exp. Fluids. 35, 502–504 (2003)

    Article  Google Scholar 

  18. Magill, J.C., McManus, K.R.: Exploring the feasibility of pulsed jet control for aircraft configurations. J. Aircr. 38(1), 48–56 (2001)

    Article  Google Scholar 

  19. McManus, K., Magill, J.: Separation control in incompressible and compressible flows using pulsed jets. AIAA Paper 96-1948 (1996)

  20. McManus, K., Magill, J.: Airfoil performance enhancement using pulsed jet separation control. AIAA Paper 97-1971 (1997)

  21. McManus, K.R., Legner, H.H., Davis, S.J.: Pulsed Vortex Generator Jets for Active Ccontrol of Flow Separation. In: 25th AIAA Fluid Dynamics Conference, Colorado Springs, CO, 20–23 June 1994

  22. Ortmanns, J., Kähler, C.J.: Investigation of pulsed actuators for active flow control using phase locked sterescopic Particle Image Velocimetry. In: 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 12–14 July 2004

  23. Pérenne, N., Foucaut, J.M., Savatier, J.: Study of the accuracy of different stereoscopic reconstruction algorithms. In: Stanislas, M., Westerweel, J., Kompenhans, J., (eds.) Particle Image Velocimetry : Recent Improvements. Proceedings of the EUROPIV 2 Workshop, pp. 375–389, Zaragoza, Spain, Springer, 31 March–1 April 2003

  24. Rathnasingham, R., Breuer, K.S.: Active control of turbulent boundary layers. J. Fluid Mech. 495, 209–233 (2003)

    Article  MATH  ADS  Google Scholar 

  25. Selby, G.V., Lin, J.C., Howard, F.G.: Control of low-speed turbulent separated flow using jet vortex generators. Exp. Fluids 12, 394–400 (1992)

    Google Scholar 

  26. Shapiro, S., King, J., Karagozian, A., M’Closkey, R.: Optimization of Controlled Jets in Crossflow. In: 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. AIAA Paper 2003-634, 6–9 January 2003

  27. Suzuki, T., Nagata, M., Shizawa, T., Honami, S.: Optimal injection condition of a single pulsed vortex generator jet to promote the cross-stream mixing. Exp. Therm. Fluid Sci. 17, 139–146 (1998)

    Article  Google Scholar 

  28. Taylor, J.R.: An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements. University Science Books. Oxford University Press (1982)

  29. Tilmann, C.P., Langan, K.J., Betterton, J.G., Wilson, M.J.: Characterization of pulsed vortex generator jets for active flow control. In: RTO AVT Symposium on Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles, pp. 5–1–5–12. Braunschwzeig, Germany, 8–11 May 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kostas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostas, J., Foucaut, J.M. & Stanislas, M. The Flow Structure Produced by Pulsed-jet Vortex Generators in a Turbulent Boundary Layer in an Adverse Pressure Gradient. Flow Turbulence Combust 78, 331–363 (2007). https://doi.org/10.1007/s10494-007-9069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-007-9069-3

Key words

Navigation