Skip to main content
Log in

Mutual interference between adult females of Galendromus flumenis (Acari: Phytoseiidae) feeding on eggs of Banks grass mite decreases predation efficiency and increases emigration rate

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The Banks grass mite, Oligonychus pratensis (Banks) (Acari: Tetranychidae) causes significant damage to dates in California (USA), if not controlled. Studies are underway to develop biological control strategies against this pest in dates using the predatory mite Galendromus flumenis (Chant) (Acari: Phytoseiidae). In California date gardens, this predator is found in low numbers that are insufficient for the economic suppression of Banks grass mites, and our research aims to understand why it fails to keep up with prey densities. The hypothesis that prey density and predator interference interactively determine the predation efficiency of G. flumenis was tested. In addition, the effect of arena size and prey and predator density manipulations on the emigration rate of the predator was investigated. Our results indicate that the per capita predation rate of G. flumenis decreases steeply with increasing predator density due to mutual interference. Analysis of emigration data considering the arena size and predator numbers showed that the emigration rate of G. flumenis was higher from small arenas, and increased with increasing predator numbers. When emigration data were analyzed using prey and predator densities as independent variables, only the effect of predator density was significant, suggesting that higher predator density increases the emigration rate of G. flumenis. These results contribute to our understanding of the predator–prey interactions, and help in designing strategies for more efficient augmentative releases of G. flumenis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams PA, Ginzburg LR (2000) The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol Evol 15:337–341

    Article  CAS  PubMed  Google Scholar 

  • Anderson JJ (2010) Ratio- and predator-dependent functional forms for predators optimally foraging in patches. Am Nat 175:240–249

    Article  PubMed  Google Scholar 

  • Arditi R, Ginzburg LR (1989) Coupling in predator-prey dynamics: ratio-dependence. J Theor Biol 139:311–326

    Article  Google Scholar 

  • Arditi R, Ginzburg LR (2012) How species interact: altering the standard view of trophic ecology. Oxford University Press, New York

    Book  Google Scholar 

  • Arditi R, Akçakaya HR (1990) Understimation of mutual interference of predators. Oecologia 83:358–361

    Article  CAS  PubMed  Google Scholar 

  • Banks N (1914) New mites. J Entomol Zool 6:1–57

    Google Scholar 

  • Beddington JR (1975) Mutual interference between parasites or predators and its effect on searching efficiency. J Anim Ecol 44:331–340

    Article  Google Scholar 

  • Blackwood JS, Luh HK, Croft BA (2004) Evaluation of prey-stage preference as an indicator of life-style type in phytoseiid mites. Exp Appl Acarol 33:261–280

    Article  CAS  PubMed  Google Scholar 

  • Clerc T, Davison AC, Bersier L-F (2009) Stochastic modelling of prey depletion processes. J Theor Biol 259:523–532

    Article  PubMed  Google Scholar 

  • Crowley PH, Martin EK (1989) Functional-responses and interference within and between year classes of a dragonfly population. J N Am Benthol Soc 8:211–221

    Article  Google Scholar 

  • DeAngelis DL, Goldstein RA, O’Neil RV (1975) A model for trophic interaction. Ecology 56:881–892

    Article  Google Scholar 

  • Delong JP, Vasseur DA (2011) Mutual interference is common and mostly intermediate in magnitude. BMC Ecol 11:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Elgar MA, Crespi BJ (1992) Cannibalism: ecology and evolution among diverse taxa. Oxford University Press, Oxford

    Google Scholar 

  • Evans HF (1976) Mutual interference between predatory anthocorids. Ecol Entomol 1:283–286

    Article  Google Scholar 

  • Eveleigh ES, Chant DA (1982) Experimental studies on acarine predator-prey interactions: the effects of predator density on prey consumption, predator searching efficiency, and the functional response to prey density (Acarina: Phytoseiidae). Can J Zool 60:611–629

    Article  Google Scholar 

  • Farazmand A, Fathipour Y, Kamali K (2012) Functional response and mutual interference of Neoseiulus californicus and Typhlodromus bagdasarjani (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Int J Acarol 38:369–376

    Article  Google Scholar 

  • Fryxell JM (2013) The great predator-prey debate. Ecology 94:1206–1207

    Article  Google Scholar 

  • Ganjisaffar F, Perring TM (2015a) Prey stage preference and functional response of the predatory mite Galendromus flumenis to Oligonychus pratensis. Biol Control 82:40–45

    Article  Google Scholar 

  • Ganjisaffar F, Perring TM (2015b) Relationship between temperature and development of Galendromus flumenis (Acari: Phytoseiidae), a predator of Banks grass mite (Acari: Tetranychidae). Exp Appl Acarol 67:535–546

    Article  PubMed  Google Scholar 

  • Ganjisaffar F, Perring TM (2017) A life table analysis to evaluate biological control of Banks grass mite using the predatory mite, Galendromus flumenis (Acari: Phytoseiidae). Syst Appl Acarol 22:7–13

    Article  Google Scholar 

  • Hassell MP (1978) Arthropod predator-prey systems. Princeton University Press, Princeton

    Google Scholar 

  • Hassell MP, Varley GC (1969) New inductive population model for insect parasites and its bearing on biological control. Nature 223:1113–1137

    Article  Google Scholar 

  • Henne DC, Johnson SJ (2010) Laboratory evaluation of aggregation, direct mutual interference, and functional response characteristics of Pseudacteon tricuspis Borgmeier (Diptera: Phoridae). Biol Control 55:63–71

    Article  Google Scholar 

  • Hoddle M, Van Driesche R, Sanderson J (1997) Biological control of Bemisia argentifolii (Homoptera: Aleyrodidae) on poinsettia with inundative releases of Encarsia formosa (Hymenoptera: Aphelinidae): are higher release rates necessarily better? Biol Control 10:166–179

    Article  Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  • IBM SPSS Statistic (2016) SPSS 23.0 for windows, Chicago

  • Ivlev VS (1961) Experimental ecology of the feeding of fishes. Yale University Press, New Haven

    Google Scholar 

  • Jensen CXJ, Ginzburg LR (2005) Paradoxes or theoretical failures? the jury is still out. Ecol Model 188:3–14

    Article  Google Scholar 

  • Jost C, Ellner SP (2000) Testing for predator dependence in predator-prey dynamics: a non-parametric approach. Proc R Soc Lond B 267:1611–1620

    Article  CAS  Google Scholar 

  • Juliano SA, Williams FM (1987) A comparison of methods for estimating the functional response parameters of the random predator equation. J Anin Ecol 56:641–653

    Article  Google Scholar 

  • Khodayari S, Fathipour Y, Sedaratian A (2016) Prey stage preference, switching and mutual interference of Phytoseius plumifer (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Syst Appl Acarol 21:347–355

    Article  Google Scholar 

  • Kratina P, Vos M, Bateman A, Anholt BR (2009) Functional responses modified by predator density. Oecologia 159:425–433

    Article  PubMed  Google Scholar 

  • Kuchlein JH (1966) Mutual interference among the predaceous mite Typhlodromus longipes Nesbitt (Acari: Phytoseiidae). 1. Effects of predator density on oviposition rate and migration tendency. Mededelingen Rijksfaculteit Landbouwwetenschappen Gent 31:740–745

    Google Scholar 

  • McCoy MW, Stier AC, Osenberg CW (2012) Emergent effects of multiple predators on survival: the importance of depletion and the functional response. Ecol Lett 15:1449–1456

    Article  PubMed  Google Scholar 

  • McMurtry JA, Scriven GT (1965) Insectary production of phytoseiid mites. J Econ Entomol 58:282–284

    Article  Google Scholar 

  • Nachman G (2006a) A functional response model of a predator population foraging in a patchy habitat. J Anim Ecol 75:948–958

    Article  PubMed  Google Scholar 

  • Nachman G (2006b) The effects of prey patchiness, predator aggregation, and mutual interference on the functional response of Phytoseiulus persimilis feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Exp Appl Acarol 38:87–111

    Article  PubMed  Google Scholar 

  • Negm MW, De Moraes GJ, Perring TM (2015) Mite pests of date palms. In: Wakil W, Faleiro JR, Miller TA (eds) Sustainable pest management in date palm: current status and emerging challenges. Springer, Switzerland, pp 347–389

    Chapter  Google Scholar 

  • Nicholson AJ, Bailey VA (1935) The balance of animal populations. Proc Zool Soc Lond 105:551–598

    Article  Google Scholar 

  • Papanikolaou NE, Demiris N, Milonas PG, Preston S, Kypraios T (2016) Does mutual interference affect the feeding rate of Aphidophagous coccinellids? a modeling perspective. PLoS ONE 11:1–10

    Article  Google Scholar 

  • Reis PR, Sousa EO, Teodoro AV, Neto MP (2003) Effect of prey densities on the functional and numerical response of two species of predaceous mites (Acari: Phytoseiidae). Neotrop Entomol 32:461–467

    Article  Google Scholar 

  • Rogers D (1972) Random search and insect population models. J Anim Ecol 41:353–360

    Article  Google Scholar 

  • Royama T (1992) Analytical population dynamics. Chapman and Hall, London

    Book  Google Scholar 

  • SAS Institute (2014) SAS Enterprise Guide 7.1. SAS Institute Inc., Cary, North Carolina

  • Schausberger P (2003) Cannibalism among phytoseiid mites: a review. Exp Appl Acarol 29:173–191

    Article  PubMed  Google Scholar 

  • Schmidt JM, Crist TO, Wrinn K, Rypstra AL (2014) Predator interference alters foraging behavior of a generalist predatory arthropod. Oecologia 175:501–508

    Article  PubMed  Google Scholar 

  • Skalski GT, Gilliam JF (2001) Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82:3083–3092

    Article  Google Scholar 

  • Skovgård H, Nachman G (2015) Effects of mutual interference on the ability of Spalangia cameroni (Hymenoptera: Pteromalidae) to attack and parasitize pupae of Stomoxys calcitrans (Diptera: Muscidae). Biol Control 44:1076–1084

    Google Scholar 

  • Stephens DW, Brown JS, Ydenberg RC (2007) Foraging: behavior and ecology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Veeravel R, Baskaran P (1997) Searching behaviour of two coccinellid predators, Coccinella transversalis Fab. And Cheilomenes sexmaculatus Fab., on eggplant infested with Aphis gossypii Glow. Int J Trop Insect Sci 17:363–368

    Article  Google Scholar 

  • Wen B, Brower JH (1994) Suppression of Maize Weevil, Sitophilus zeamais (Coleoptera: Curculionidae), Populations in Drums of Corn by Single and Multiple Releases of the Parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae). J Kans Entomol Soc 67:331–339

    Google Scholar 

  • Zhang Z-Q, Croft BA (1995) Intraspecific competition in immature Amblyseius fallacis, Amblyseius andersoni, Tvohlodromus occidentalis and Tvohlodromus pyri (Acari: Phytoseiidae). Exp Appl Acarol 19:65–77

    Article  Google Scholar 

Download references

Acknowledgements

We thank the many contributions of Albert Keck, Oscar Leal, Darcy Reed, and James Hepler. We are grateful to Drs. Timothy Paine, Subir Ghosh and Erin Rankin for providing useful comments on an earlier draft of this manuscript. This research was supported, in part, by the California Date Commission and Robert and Peggy van den Bosch Memorial Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Ganjisaffar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganjisaffar, F., Nachman, G. & Perring, T.M. Mutual interference between adult females of Galendromus flumenis (Acari: Phytoseiidae) feeding on eggs of Banks grass mite decreases predation efficiency and increases emigration rate. Exp Appl Acarol 72, 1–14 (2017). https://doi.org/10.1007/s10493-017-0138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-017-0138-6

Keywords

Navigation