Skip to main content
Log in

Intraguild predation between phytoseiid mite species might not be so common

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

It is widely acknowledged that intraguild predation (IGP) occurs frequently between species of phytoseiid mites. However, in the presence of a shared resource many species of phytoseiid mites considerably reduce, or even cease, predation on each other. That being the case, IGP would then be minimal, or non-existent, and its theoretical effects on communities negligible. The aim of this work was two-fold. On the one hand, we aimed at determining the occurrence of IGP between two species of phytoseiid mites that inhabit avocado agro-ecosystems (Euseius stipulatus and E. scutalis) while considering the influence of abiotic conditions. On the other hand, we aimed at evaluating the occurrence of IGP between species of phytoseiid mites through a literature search of studies to determine whether methodologies and results in these papers supported the extended idea of IGP being widespread in the Phytoseiidae family. Our results suggested that in the presence of the shared resource predation on the IG-prey was negligible and both species seem to forage preferentially on pollen. Therefore, the interaction that most likely drives the dynamics of these two species in the field is exploitative resource competition. The literature search revealed that caution should be taken when assuming that IGP between phytoseiid mites is widespread, because only few works used experimental set ups with the adequate array of treatments allowing to assess whether IG-predators fed or not on both the IG-prey and the shared resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad-Moyano R, Urbaneja A, Schausberger P (2010) Intraguild interactions between Euseius stipulatus and the candidate biocontrol agents of Tetranychus urticae in Spanish clementine orchards: Phytoseiulus persimilis and Neoseiulus californicus. Exp Appl Acarol 50:23–34

    Article  PubMed  Google Scholar 

  • Abdallah AA, Zhang Z-Q, Masters GJ, McNeill S (2001) Euseius finlandicus (Acari: Phytoseiidae) as a potential biocontrol agent against Tetranychus urticae (Acari: Tetranychidae): life history and feeding habits on three different types of food. Exp Appl Acarol 25:833–847

    Article  Google Scholar 

  • Abou-Setta MM, Childers CC (1987) Biology of Euseius mesembrinus (Acari: Phytoseiidae): life tables on ice plant pollen at different temperatures with notes on behavior and food range. Exp Appl Acarol 3:123–130

    Article  Google Scholar 

  • Abou-Setta MM, Childers CC (1989) Biology of Euseius mesembrinus (Acari: Phytoseiidae): life tables and feeding behavior on tetranychid mites in citrus. Environ Entomol 18:665–669

    Article  Google Scholar 

  • Argüelles A, Plazas N, Bustos A, Cantor F, Rodríguez D, Hilarion A (2013) Interacción entre dos ácaros depredadores de Tetranychus urticae Koch (Acariformes: Tetranychidae) en laboratorio; Interaction between two predator mites of Tetranychus urticae Koch (Acariformes: Tetranychidae) in laboratory. Acta Biol Colomb 18:137–148

    Google Scholar 

  • Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7:557–564

    Article  Google Scholar 

  • Beveridge OS, Humphries S, Petchey OL (2010) The interacting effects of temperature and food chain length on trophic abundance and ecosystem function. J Anim Ecol 79:693–700

    Article  PubMed  Google Scholar 

  • Bounfour M, McMurtry JA (1987) Biology and ecology of Euseius scutalis (Athias-Henriot) (Acarina: Phytoseiidae). Hilgardia 55:1–23

    Article  Google Scholar 

  • Bouras SL, Papadoulis GT (2005) Influence of selected fruit tree pollen on life history of Euseius stipulatus (Acari: Phytoseiidae). Exp Appl Acarol 36:1–14

    Article  PubMed  Google Scholar 

  • Brodeur J, Rosenheim JA (2000) Intraguild interactions in aphid parasitoids. Entomol Exp Appl 97:93–108

    Article  Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C (2010) Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). B Entomol Res 100:167

    Article  CAS  Google Scholar 

  • Çakmak I, Janssen A, Sabelis MW (2006) Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Exp Appl Acarol 38:33–46

    Article  PubMed  Google Scholar 

  • Chase RD, Abrams PA, Grover J, Diehl S, Holt RD, Richards S, Case T, Wilson W, Nisbet R, Chesson P (2002) The influence between predation and competition: a review and synthesis. Ecol Lett 5:302–315

    Article  Google Scholar 

  • Consejería de Agricultura y Pesca (2013) Observatorio de precios. Ficha del aguacate 2011/2012. http://www.juntadeandalucia.es/agriculturaypesca/observatorio

  • Dunson WA, Travis J (1991) The role of abiotic factors in community organization. Am Nat 138:1067–1091

    Article  Google Scholar 

  • Ferragut F, García-Mari F, Costa-Comelles J, Laborda R (1987) Influence of food and temperature on development and oviposition of Euseius stipulatus and Typhlodromus phialatus (Acari. Phytoseiidae). Exp Appl Acarol 3:317–329

    Article  Google Scholar 

  • Gagnon AÈ, Heimpel GE, Brodeur J (2011) The ubiquity of intraguild predation among predatory arthropods. PLoS ONE 6:e28061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331

    Article  PubMed  Google Scholar 

  • González-Fernández JJ, de la Peña F, Hormaza JI, Boyero JR, Vela JM, Wong E, Trigo MM, Montserrat M (2009) Alternative food improves the combined effect of an omnivore and a predator on biological pest control. A case study in avocado orchards. B Entomol Res 99:433–444

    Article  Google Scholar 

  • Gotoh T, Hanawa M, Shimazaki S, Yokoyama N, Fu CQ, Sugawara R, Yano S (2014) Factors determining species displacement of related predatory mite species (Acari: Phytoseiidae). Exp Appl Acarol 63:205–215

    Article  PubMed  Google Scholar 

  • Guzmán C, Aguilar-Fenollosa E, Sahún RM, Boyero JR, Vela JM, Wong E, Jaques JA, Montserrat M (2016) Temperature-specific competition in predatory mites: implications for biological pest control in a changing climate. Agr Ecosyst Environ. doi:10.1016/j.agee.2015.09.024

    Google Scholar 

  • Hatherly IS, Bale JS, Walters KF (2005) Intraguild predation and feeding preferences in three species of phytoseiid mite used for biological control. Exp Appl Acarol 37:43–55

    Article  PubMed  Google Scholar 

  • HilleRisLambers R, Dieckmann U (2003) Competition and predation in simple food webs: intermediately strong trade-offs maximize coexistence. Proc R Soc Lond B 270:2591–2598

    Article  Google Scholar 

  • Holt RD, Huxel GR (2007) Alternative prey and the dynamics of intraguild predation: theoretical perspectives. Ecology 88:2706–2712

    Article  PubMed  Google Scholar 

  • Janssen A, Sabelis MW (2015) Alternative food and biological control by generalist predatory mites: the case of Amblyseius swirskii. Exp Appl Acarol 65:413–418

    Article  PubMed  Google Scholar 

  • Janssen A, Montserrat M, HilleRisLambers R, de Roos AM, Pallini A, Sabelis MW (2006) Intraguild predation usually does not disrupt biological control. In: Boivin G, Brodeur J (eds) Trophic and guild interactions in biological control. Springer, Netherlands, pp 21–44

  • Janssen A, Sabelis MW, Magalhães S, Montserrat M, van der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713–2719

    Article  PubMed  Google Scholar 

  • Magalhaes S, Tudorache C, Montserrat M, van Maanen R, Sabelis MW, Janssen A (2005) Diet of intraguild predators affects antipredator behavior in intraguild prey. Behav Ecol 16:364–370

    Article  Google Scholar 

  • Maoz Y, Gal S, Argov Y, Coll M, Palevsky E (2011) Biocontrol of persea mite, Oligonychus perseae, with an exotic spider mite predator and an indigenous pollen feeder. Biol Control 59:147–157

    Article  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  CAS  PubMed  Google Scholar 

  • McMurtry JA, Rodriguez J (1987) Nutritional ecology of phytoseiid mites. In: Slansky F, Rodriguez J (eds) Nutritional ecology of insects, mites and spiders. Wiley, New York, pp 609–644

    Google Scholar 

  • Mendel D, Schausberger P (2011) Diet dependent intraguild predation between the predatory mites Neoseiulus californicus and Neoseiulus cucumeris. J Appl Entomol 135:311–319

    Article  Google Scholar 

  • Meszaros A, Tixier MS, Cheval B, Barbar Z, Kreiter S (2007) Cannibalism and intraguild predation in Typhlodromus exhilaratus and T. phialatus (Acari: Phytoseiidae) under laboratory conditions. Exp Appl Acarol 41:37–43

    Article  PubMed  Google Scholar 

  • Momen FM (2010) Intra-and interspecific predation by Neoseiulus barkeri and Typhlodromus negevi (Acari: Phytoseiidae) on different life stages: predation rates and effects on reproduction and juvenile development. Acarina 18:81–88

    Google Scholar 

  • Momen F, Abdel-Khalek A (2009) Cannibalism and intraguild predation in the phytoseiid mites Typhlodromips swirskii, Euseius scutalis and Typhlodromus athiasae (Acari: Phytoseiidae). Acarina 17:223–229

    Google Scholar 

  • Montserrat M, Magalhaes S, Sabelis MW, de Roos AM, Janssen A (2008) Patterns of exclusion in an intraguild predator–prey system strongly depend on initial conditions. J Anim Ecol 77:624–630

    Article  PubMed  Google Scholar 

  • Montserrat M, Magalhaes S, Sabelis MW, De Roos AM, Janssen A (2012) Invasion success in communities with reciprocal intraguild predation depends on the stage structure of the resident population. Oikos 121:67–76

    Article  Google Scholar 

  • Montserrat M, Guzman C, Sahun RM, Belda JE, Hormaza JI (2013) Pollen supply promotes, but high temperatures demote, predatory mite abundance in avocado orchards. Agr Ecosyst Environ 164:155–161

    Article  Google Scholar 

  • Mylius SD, Klumpers K, de Roos AM, Persson L (2001) Impact of omnivory and stage structure on food web composition along a productivity gradient. Am Nat 158:259–276

    Article  CAS  PubMed  Google Scholar 

  • Negloh K, Hanna R, Schausberger P (2012) Intraguild predation and cannibalism between the predatory mites Neoseiulus neobaraki and N. paspalivorus, natural enemies of the coconut mite Aceria guerreronis. Exp Appl 58:235–246

    Article  Google Scholar 

  • Onzo A, Hanna R, Negloh K, Toko M, Sabelis MW (2005) Biological control of cassava green mite with exotic and indigenous phytoseiid predators-effects of intraguild predation and supplementary food. Biol Control 33:143–152

    Article  Google Scholar 

  • Pimm SL, Lawton JH (1978) On feeding on more than one trophic level. Nature 275:542–544

    Article  Google Scholar 

  • Polis GA, Holt RD (1992) Intraguild predation—the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154

    Article  CAS  PubMed  Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation-potential competitors that eat each other. Annu Rev Ecol Evol Syst 20:297–330

    Article  Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents—theory and evidence. Biol Control 5:303–335

    Article  Google Scholar 

  • Sabelis MW (1985) Development. In: Helle W, Sabelis MW (eds) Spider mites, their biology, natural enemies and control world crop pests, vol lB. Elsevier, Amsterdam, pp 43–53

    Google Scholar 

  • Sato Y, Mochizuki A (2011) Risk assessment of non-target effects caused by releasing two exotic phytoseiid mites in Japan: Can an indigenous phytoseiid mite become IG prey? Exp Appl Acarol 54:319–329

    Article  PubMed  Google Scholar 

  • Schausberger P, Croft BA (2000a) Nutritional benefits of intraguild predation and cannibalism among generalist and specialist phytoseiid mites. Ecol Entomol 25:473–480

    Article  Google Scholar 

  • Schausberger P, Croft BA (2000b) Cannibalism and intraguild predation among phytoseiid mites: Are aggressiveness and prey preference related to diet specialization? Exp Appl Acarol 24:709–725

    Article  CAS  PubMed  Google Scholar 

  • Sourassou NF, Hanna R, Negloh K, Breeuwer JAJ, Sabelis MW (2013) Females as intraguild predators of males in cross-pairing experiments with phytoseiid mites. Exp Appl Acarol 61:173–182

    Article  Google Scholar 

  • Vela JM, González-Fernández JJ, Wong E, Montserrat M, Farré JM, Boyero JR (2007) El ácaro del aguacate (Oligonychus perseae): Estado actual del problema e investigación en Andalucía. Agrícola Vergel 306:301–308

    Google Scholar 

  • Zhang B, Zheng W, Zhao W, Xu X, Liu J, Zhang H (2014) Intraguild predation among the predatory mites Amblyseius eharai, Amblyseius cucumeris and Amblyseius barkeri. Biocontrol Sci Technol 24:103–115

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Spanish Ministry of Science and Innovation (AGL2011-30538-C03-03). C.G. was recipient of a grant from the Andalusian Government (Junta de Andalucía). The animals used for the research of this publication are not test animals in the legal sense.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Montserrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán, C., Sahún, R.M. & Montserrat, M. Intraguild predation between phytoseiid mite species might not be so common. Exp Appl Acarol 68, 441–453 (2016). https://doi.org/10.1007/s10493-015-9997-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-015-9997-x

Keywords

Navigation