Skip to main content
Log in

Risk assessment of Cry toxins of Bacillus thuringiensis on the predatory mites Euseius concordis and Neoseiulus californicus (Acari: Phytoseiidae)

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Genetically modified plants carrying Cry toxins of Bacillus thuringiensis (Bt) are widely used for pest control. Possible adverse effects as a result of the use of this control technique to non-target organisms is still a concern; however, few studies have addressed the effects of Bt crops on phytoseiid predatory mites. Phytoseiids are important for the natural control of phytophagous mites, but they can also feed on pollen, plant exudates, etc. Thus, phytoseiids may ingest Bt toxins through several pathways. In this paper, we evaluate the direct effect of Bt-toxins by feeding the predators on Bt cell suspensions, on solution of a Bt toxin and the tri-trophic effect by Bt expressed in transgenic plants. We present a method of conducting toxicological tests with Phytoseiidae which can be useful in studies of risk analysis of toxins to be expressed by genetically engineered plants. This method was used to evaluate the potential effect of ingestion of suspensions of Bt (1.25 × 108 spores/ml) and of purified protein Cry1Ia12 (0.006 mg/ml and 0.018 mg/ml) on Euseius concordis, a predatory mite that develops and reproduces best on pollen. The effects of genetically modified Bollgard® cotton, which carries the Cry1Ac protein, on Neoseiulus californicus, a selective predator that feeds more on spider mites than on pollen or insects, was determined by feeding them with Tetranychus urticae reared in Bollgard® cotton and on the non-transgenic isoline. When E. concordis was fed with suspension of Bt isolate derived from product Dipel® PM, no significant effects were detected. Similarly, Cry1Ia12 Bt toxin, at a concentration of 0.006 mg/ml, did not affect E. concordis. At a concentration of 0.018 mg/ml, however, the intake of this protein reduced the reproduction of E. concordis. There were no effects of Bollgard® cotton on the biological traits and on the predatory capacity of N. californicus. Results indicate that the Cry toxins of B. thuringiensis studied, at the concentrations used in the field or expressed in transgenic plants, should not affect the predatory mites E. concordis and N. californicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Álvarez-Alfageme F, Bigler F, Romeis J (2011) Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design. Transgenic Res 20:467–479

    Article  PubMed  Google Scholar 

  • Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecol Lett 9:196–214

    Article  PubMed  CAS  Google Scholar 

  • Baur ME, Boethel DJ (2003) Effect of Bt-cotton expressing Cry1A(c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol Control 26:325–332

    Article  CAS  Google Scholar 

  • Carter ME, Villani MG, Allee LL, Losey JE (2004) Absence of non-target effects of two Bacillus thuringiensis coleopteran active δ-endotoxins on the bulb mite, Rhizoglypus robini (Claparède) (Acari, Acaridae). J Appl Entomol 128:56–63

    Article  CAS  Google Scholar 

  • Chapman MH, Hoy MA (1991) Relative toxicity of Bacillus thuringiensis var. tenebrionis to the two-spotted spider mite (Tetranychus urticae Kock) and its predator Metaseiulus occidentalis (Nesbitt) (Acari, Tetranychidae and Phytoseiidae). J Appl Entomol 111:147–154

    Article  Google Scholar 

  • CTNBio (Comissão Técnica Nacional de Biossegurança) (2005) On line consultation of technical advice. Available at http://www.ctnbio.gov.br/index.php/content/view/10951.html. Assessed in May 2009

  • Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447

    Article  Google Scholar 

  • Dutton A, Klein H, Romeis J, Bigler F (2003) Prey-mediated effects of Bacillus thuringiensis spray on the predator Chrysoperla carnea in maize. Biol Control 26:209–215

    Article  Google Scholar 

  • Esteves Filho AB, Oliveira JV, Torres JB, Gondim MGC Jr (2010) Compared biology and behavior of Tetranychus urticae Koch (Acari: Tetranychidae) and Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae) on Bollgard™ and non-Transgenic Isoline Cotton. Neotrop Entomol 39(3):338–344

    Article  PubMed  Google Scholar 

  • Garcia-Alonso M, Jacobs E, Raybould A, Nickson TE, Sowig P, Willekens H, Kouwe PVD, Layton R, Amijee F, Fuentes AM, Tencalla F (2006) A tiered system for assessing the risk of genetically modified plants to non-target organisms. Environ Biosafety Res 5(2):57–65

    Article  PubMed  Google Scholar 

  • Greenplate J (1997) Response to reports of early damage in 1996 commercial Bt transgenic cotton (Bollgard™) plantings. Soc Invertebr Pathol Newslett 29:15–18

    Google Scholar 

  • Grossi-de-Sa MF, de Magalhães MQ, Silva MS, Silva SMB, Dias SC, Nakasu EYT, Brunetta PSF, Oliveira GR, de Oliveira Neto OB, de Oliveira RS, Soares LHB, Ayub MAZ, Siqueira HAA, Figueira ELZ (2007) Susceptibility of Anthonomus grandis (Cotton Boll Weevil) and Spodoptera frugiperda (Fall Armyworm) to a Cry1Ia-type toxin from a brazilian Bacillus thuringiensis strain. J Biochem Mol Biol 40(5):773–782

    Article  PubMed  CAS  Google Scholar 

  • Hilbeck A, Moar WJ, Pusztai-Carey M, Filippini A, Bigler F (1998) Toxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27(5):1255–1263

    CAS  Google Scholar 

  • Kozeil MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren G, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio-Technol 11:194–200

    Article  Google Scholar 

  • Li Y, Romeis J (2010) Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum. Biol Control 53:337–344

    Article  CAS  Google Scholar 

  • Lozzia GC, Rigamonti IE, Manachini B, Rocchetti R (2000) Laboratory studies on the effects of transgenic corn on the spider mite Tetranychus urticae Koch. Boll Zool Agrar Bachic 32:35–47

    Google Scholar 

  • Magalhães MTQ (2006) Toxinas Cry: perspectivas para obtenção de algodão transgênico brasileiro. Dissertation, Universidade Ferderal do Rio Grande do Sul, RS

  • Maia AHN, Luiz AJB (2006) Programa SAS para análise de tabelas de vida e fertilidade de artrópodes: o método Jackknife. Comunicado Técnico 33. Jaguariúna, 11 p

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  PubMed  CAS  Google Scholar 

  • McMurtry JA, Oatman ER, Phillips PA, Wood CW (1978) Establishment of Phytoseiulus persimilis (Acari: Phytoseiidae) in Southern California. Entomophaga 23(2):175–179

    Article  Google Scholar 

  • Meissle M, Romeis J (2009) The web-building spider Theridion impressum (Araneae: Theridiidae) is not adversely affected by Bt maize resistant to corn rootworms. Plant Biotechnol 7:645–656

    Article  CAS  Google Scholar 

  • Moraes GJ, McMurtry JA (1981) Biology of Amblyseius citrifolius (Denmark and Muma) (Acarina: Phytoseiidae). Hilgardia 49(1):1–29

    Google Scholar 

  • Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev Perspect Agric Vet Sci Nutr Nat Res 4(11) http://fbae.org/2009/FBAE/website/images/pdf/imporatant-publication/impacts-of-bt-crops-on-non-target-invertebrates-and-insecticide-use-patterns.pdf

  • Obrist LB, Klein H, Dutton A, Bigler F (2006a) Assessing the effects of Bt maize on the predatory mite Neoseiulus cucumeris. Exp Appl Acarol 38:125–139

    Article  PubMed  Google Scholar 

  • Obrist LB, Dutton A, Albajes R, Bigler F (2006b) Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecol Entomol 31:143–154

    Article  Google Scholar 

  • Obrist LB, Dutton A, Romeis J, Bigler F (2006c) Biological activity of Cry1Ab toxin expressed by Bt maize following ingestion by herbivorous arthropods and exposure of the predator Chrysoperla carnea. Biocontrol 51:31–48

    Article  CAS  Google Scholar 

  • Oliveira AR, Castro TR, Capalbo DMF, Delalibera I Jr (2007) Toxicological evaluation of genetically modified cotton (Bollgard®) and Dipel® WP on the non-target soil mite Scheloribates praeincisus (Acari: Oribatida). Exp Appl Acarol 41:191–201

    Article  PubMed  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplante JT, Fischhoff DA (1990) Insect resistant cotton plants. Biotechnology 8:939–943

    Article  PubMed  CAS  Google Scholar 

  • Polanczyk RA, Valicente FH, Barreto MR (2008) Utilização de Bacillus thuringiensis no controle de pragas agrícolas na América Latina. In: Alves SB, Lopes RB (eds) Controle microbiano de pragas na América Latina. Fealq, Piracicaba, pp 111–136

    Google Scholar 

  • Ponsard S, Gutierrez AP, Mills NJ (2002) Effect of Bt-toxin (Cry1Ac) in transgenic cotton on the adult longevity of four heteropteran predators. Environ Entomol 31(6):1197–1205

    Article  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MMC, Hartley SE, Hellmich RL, Huesing JE, Jepson PC, Layton R, Quemada H, Raybould A, Rose RI, Schiemann J, Sears MK, Shelton AM, Sweet J, Vaituzis Z, Wolt JD (2008) Assessment of risk of in-sect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208

    Article  PubMed  CAS  Google Scholar 

  • Rovenská GZ, Zemek R, Schmidt JEU, Hilbeck A (2005) Altered host plant preference of Tetranychus urticae and prey preference of its predator Phytoseiulus persimilis (Acari: Tetranychidae, Phytoseiidae) on transgenic Cry3Bb-eggplants. Biol Control 33:293–300

    Article  Google Scholar 

  • SAS Institute (2002–2003) User’s manual, version 9.1.3. SAS Institute, Cary, NC

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    PubMed  CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  PubMed  CAS  Google Scholar 

  • Silveira Neto S, Nakano O, Barbin D, Nova NAV (1976) Manual de ecologia dos insetos. São Paulo, Ceres

    Google Scholar 

  • Stotzky G (2000) Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J Environ Qual 29:691–705

    Article  CAS  Google Scholar 

  • Torres JB, Ruberson JR (2008) Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Transgenic Res 17:345–354

    Article  PubMed  CAS  Google Scholar 

  • Valicente FH, Barreto MR (2003) Bacillus thuringiensis survey in Brazil: geographical distribution and insecticidal activity against Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotrop Entomol 32(4):639–644

    Article  Google Scholar 

  • Wilson LJ, Mensah RK, Fitt GP (2004) Implementing integrated pest management in Australian cotton. In: Horowitz AR, Ishaaya I (eds) Insect pest management: field and protect crops. Springer, Berlin, pp 97–118

    Google Scholar 

  • Wu K, Guo Y (2003) Influences of Bacillus thuringiensis Berliner cotton planting on population dynamics of the cotton aphid, Aphis gossypii Glover. Northern China. Environ Entomol 32(2):312–318

    Article  Google Scholar 

  • Yu L, Berry RE, Croft BA (1997) Effects of Bacillus thuringiensis toxins in transgenic cotton and potato on Falsomia candida (Collembola: Isotomidae) and Oppia nitens (Acari: Oribatidae). J Econ Entomol 90(1):113–118

    Google Scholar 

Download references

Acknowledgments

The first author was a recipient of a scholarship from São Paulo Research Foundation (FAPESP), and the study was partly funded by the Young Scientist Fellowship (FAPESP 03/00077-1) granted to Italo Delalibera Júnior. We thanks Dr. Maria Fatima Grossi-de-Sá, from Embrapa Recursos Genéticos e Biotecnologia for providing the Cry1Ia12 toxin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Italo Delalibera Júnior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Castro, T.R., Ausique, J.J.S., Nunes, D.H. et al. Risk assessment of Cry toxins of Bacillus thuringiensis on the predatory mites Euseius concordis and Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 59, 421–433 (2013). https://doi.org/10.1007/s10493-012-9620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-012-9620-3

Keywords

Navigation