Skip to main content
Log in

Cooperative particle swarm optimization for multiobjective transportation planning

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The paper presents a multiobjective optimization problem that considers distributing multiple kinds of products from multiple sources to multiple targets. The problem is of high complexity and is difficult to solve using classical heuristics. We propose for the problem a hierarchical cooperative optimization approach that decomposes the problem into low-dimensional subcomponents, and applies Pareto-based particle swarm optimization (PSO) method to the main problem and the subproblems alternately. In particular, our approach uses multiple sub-swarms to evolve the sub-solutions concurrently, controls the detrimental effect of variable correlation by reducing the subproblem objectives, and brings together the results of the sub-swarms to construct effective solutions of the original problem. Computational experiment demonstrates that the proposed algorithm is robust and scalable, and outperforms some state-of-the-art constrained multiobjective optimization algorithms on a set of test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Algorithm 1
Fig. 2
Algorithm 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Another form of the problem model requires the balance of supply and demand, i.e., \(\sum_{i=1}^{m}a_{i}= \sum_{j=1}^{n}b_{j}\). But the models can be converted to each other without much effort.

References

  1. Ruhe G (1991) Algorithmic aspects of flows in networks. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  2. Kaliski JA, Ye YY (1993) A short-cut potential reduction algorithm for linear programming. Manag Sci 39(6):757–771

    Article  MATH  Google Scholar 

  3. Abd El-Waheda WF, Lee SM (2006) Interactive fuzzy goal programming for multi-objective transportation problems. Omega 34(2):158–166. doi:10.1016/j.omega.2004.08.006

    Article  Google Scholar 

  4. Ringuest JL, Rinks DB (1987) Interactive solutions for the linear multiobjective transportation problems. Eur J Oper Res 32(1):96–106

    Article  MathSciNet  MATH  Google Scholar 

  5. Climaco JN, Antunes CH, Alves MJ (1993) Interactive decision support for multiobjective transportation problems. Eur J Oper Res 65(1):58–67. doi:10.1016/0377-2217(93)90144-C

    Article  MATH  Google Scholar 

  6. Kasana HS, Kumar KD (2000) An efficient algorithm for multiobjective transportation problems. Asia-Pac J Oper Res 17(1):27–40

    MathSciNet  MATH  Google Scholar 

  7. Singh P, Saxena PK (2003) The multiple objective time transportation problem with additional restrictions. Eur J Oper Res 146(3):460–476. doi:10.1016/S0377-2217(02)00260-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Prakash S, Sharma MK, Singh A (2009) An efficient heuristic for multi-objective bulk transportation problem. In: International conference on computers & industrial engineering, pp 1005–1009

    Google Scholar 

  9. Cho JH, Kim HS, Choi HR (2012) An intermodal transport network planning algorithm using dynamic programming-A case study: from Busan to Rotterdam in intermodal freight routing. Appl Intell 36(3):529–541. doi:10.1007/s10489-010-0223-6

    Article  Google Scholar 

  10. Aenaida RS, Kwak NW (1994) A linear goal programming for transshipment problems with flexible supply and demand constraints. J Oper Res Soc 45(2):215–224

    Google Scholar 

  11. Abd El-Wahed WF, Abo-Sinna MA (2001) A hybrid fuzzy-goal programming approach to multiple objective decision making problems. Fuzzy Sets Syst 119(1):71–85. doi:10.1016/S0165-0114(99)00050-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Li L, Lai KK (2000) A fuzzy approach to the multiobjective transportation problem. Comput Oper Res 27(1):43–57. doi:10.1016/S0305-0548(99)00007-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehrgott M, Verma R (2001) A note on solving multicriteria transportation-location problems by fuzzy programming. Asia-Pac J Oper Res 18(2):149–164

    MathSciNet  MATH  Google Scholar 

  14. Meng Q, Lee D, Cheu R (2005) Multiobjective vehicle routing and scheduling problem with time window constraints in hazardous material transportation. J Transp Eng 131(9):699–707. doi:10.1061/(ASCE)0733-947X(2005)131:9(699)

    Article  Google Scholar 

  15. Liang TF (2008) Interactive multi-objective transportation planning decisions using fuzzy linear programming. Asia-Pac J Oper Res 25(1):11–31. doi:10.1142/S0217595908001602

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaur M, Kumar A (2012) Method for solving unbalanced fully fuzzy multi-objective solid minimal cost flow problems. Appl Intell. doi:10.1007/s10489-012-0368-6

    Google Scholar 

  17. Chen S, Zheng Y, Cattani C, Wang W (2012) Modeling of biological intelligence for SCM system optimization. Comput Math Methods Med. doi:10.1155/2012/769702

    MathSciNet  Google Scholar 

  18. Miettinen KM (1999) Nonlinear multiobjective optimization. Kluwer Academic, Boston

    MATH  Google Scholar 

  19. Caramia M, Guerriero F (2009) A heuristic approach to long-haul freight transportation with multiple objective functions. Omega 37(3):600–614. doi:10.1016/j.omega.2008.02.001

    Article  Google Scholar 

  20. Machuca E, Mandow L, de la Cruz JLP, Iovanella A (2011) Heuristic multiobjective search for hazmat transportation problems. Lect Note Comput Sci vol 7023, pp 243–252. doi:10.1007/978-3-642-25274-7_25

    Google Scholar 

  21. Vignaux GA, Michalewicx Z (1991) A genetic algorithm for the linear transportation problem. IEEE Trans Syst Man Cybern, Part B, Cybern 21(3):445–452

    MATH  Google Scholar 

  22. Gen M, Ida K, Li YZ (1998) Bicriteria transportation problem by hybrid genetic algorithm. Comput Ind Eng 35(1–2):363–366. doi: 10.1016/S0360-8352(98)00095-3

    Article  Google Scholar 

  23. Gen M, Li YZ (1998) Spanning tree-based genetic algorithm for bicriteria transportation problem. Comput Ind Eng 35(3–4):531–534. doi:10.1016/S0360-8352(98)00151-X

    Article  Google Scholar 

  24. Kang MH, Choi HR, Kim HS, Park BJ (2012) Development of a maritime transportation planning support system for car carriers based on genetic algorithm. Appl Intell 36(3):585–604. doi:10.1007/s10489-011-0278-z

    Article  Google Scholar 

  25. Zhang B, Yang P, Yu J, Li X (2010) Immune system multiobjective optimization algorithm for multidestination transportation problem. In: International conference on engineering and business management, pp 2492–2495

    Google Scholar 

  26. Wang L, Kowk SK, Ip WH (2011) Design of an improved quantum-inspired evolutionary algorithm for a transportation problem in logistics systems. J Intell Manuf. doi:10.1007/s10845-011-0568-7

    Google Scholar 

  27. Leung SCH (2007) A non-linear goal programming model and solution method for the multi-objective trip distribution problem in transportation engineering. Optim Eng 8(3):277–298. doi:10.1007/s11081-007-9019-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Mousa AA, Geneedy HM, Elmekawy AY (2010) Efficient evolutionary algorithm for solving multiobjective transportation problem. J Nat Sci Math 4(1):77–102

    Google Scholar 

  29. Mousa AA (2010) Using genetic algorithm and TOPSIS technique for multiobjective transportation problem: a hybrid approach. Int J Comput Math 87(13):3017–3029. doi:10.1080/00207160902875262

    Article  MathSciNet  MATH  Google Scholar 

  30. Zaki SA, Mousa AA, Geneedi HM, Elmekawy AY (2012) Efficient multiobjective genetic algorithm for solving transportation, assignment, and transshipment problems. Appl Math 3(1):92–99. doi:10.4236/am.2012.31015

    Article  MathSciNet  Google Scholar 

  31. Ombuki B, Ross BJ, Hanshar F (2006) Multi-objective genetic algorithms for vehicle routing problem with time windows. Appl Intell 24(1):17–30. doi:10.1007/s10489-006-6926-z

    Article  Google Scholar 

  32. Hanshar F, Ombuki-Berman BM (2007) Dynamic vehicle routing using genetic algorithms. Appl Intell 27(1):89–99. doi:10.1007/s10489-006-0033-z

    Article  MATH  Google Scholar 

  33. Lo CC, Chang WH (2000) A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem. IEEE Trans Syst Man Cybern, Part B, Cybern 30(3):461–470. doi: 10.1109/3477.846234

    Article  Google Scholar 

  34. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, pp 1942–1948

    Google Scholar 

  35. van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

    Article  Google Scholar 

  36. Huang T, Mohan AS (2006) Micro–particle swarm optimizer for solving high dimensional optimization problems (μPSO for high dimensional optimization problems). Appl Math Comput 181(2):1148–1154

    Article  MathSciNet  MATH  Google Scholar 

  37. Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method in multiobjective problems. In: ACM symposium on applied computing, pp 603–607

    Google Scholar 

  38. Reyes-Sierra M, Coello CAC (2006) Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  39. Li X (2003) A non-dominated sorting particle swarm optimizer for multiobjective optimization. Lect Note Comput Sci, vol 2723, pp 37–48

    Google Scholar 

  40. Ho SJ, Ku WY, Jou JW, Hung MH, Ho SY (2006) Intelligent particle swarm optimization in multi-objective problems. Lect Note Artif Intell, vol 3918, pp 790–800

    Google Scholar 

  41. Tripathi PK, Bandyopadhyay S, Pal SK (2007) Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients. Inf Sci 177(22):5033–5049. doi:10.1016/j.ins.2007.06.018

    Article  MathSciNet  MATH  Google Scholar 

  42. Greeff M, Engelbrecht AP (2008) Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation. In: IEEE congress on evolutionary computation, pp 2917–2924

    Google Scholar 

  43. Cooren Y, Clerc M, Siarry P (2011) MO-TRIBES, an adaptive multiobjective particle swarm optimization algorithm. Comput Optim Appl 49(2):379–400. doi:10.1007/s10589-009-9284-z

    Article  MathSciNet  MATH  Google Scholar 

  44. Goh CK, Tan KC, Liu DS, Chiam SC (2010) A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur J Oper Res 202(1):42–54. doi:10.1016/j.ejor.2009.05.005

    Article  MATH  Google Scholar 

  45. Hajek J, Szollos A, Sistek J (2010) A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization. Adv Eng Softw 41(7–8):1031–1057

    Article  MATH  Google Scholar 

  46. Zheng Y, Shi H, Chen S (2012) Fuzzy combinatorial optimization with multiple ranking criteria: a staged tabu search framework. Pac J Optim 8(3):457–472

    MathSciNet  MATH  Google Scholar 

  47. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  48. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279. doi:10.1109/TEVC.2004.826067

    Article  Google Scholar 

  49. Zhang Z (2007) Immune optimization algorithm for constrained nonlinear multiobjective optimization problems. Appl Soft Comput 7(3):840–857. doi:10.1016/j.asoc.2006.02.008

    Article  Google Scholar 

  50. Wei J, Zhang M (2011) A memetic particle swarm optimization for constrained multi-objective optimization problems. In: Proceedings of IEEE congress on evolutionary computation. IEEE Press, New York, pp 1636–1643

    Google Scholar 

  51. Li Z, Du G (2013) BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems. Comput Oper Res 40(1):282–302. doi:10.1016/j.cor.2012.07.014

    Article  MathSciNet  Google Scholar 

  52. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evol Comput 8(2):173–195. doi:10.1162/106365600568202

    Article  Google Scholar 

  53. Scott JR (1995) Fault tolerant design using single and multi-criteria genetic algorithms. Masters Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology

  54. Ammar EE, Youness EA (2005) Study on multiobjective transportation problem with fuzzy numbers. Appl Math Comput 166(2):241–253. doi:10.1016/j.amc.2004.04.103

    Article  MathSciNet  MATH  Google Scholar 

  55. Edwin Romeijn H, Zeynep Sargut F (2011) The stochastic transportation problem with single sourcing. Eur J Oper Res 214(2):262–272. doi:10.1016/j.ejor.2011.04.040

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang K, Zheng YJ (2012) A new particle swarm optimization algorithm for fuzzy optimization of armored vehicle scheme design. Appl Intell 37(4):520–526. doi:10.1007/s10489-012-0345-0

    Article  Google Scholar 

  57. Aksaç A, Uzun E, Özyer T (2012) A real time traffic simulator utilizing an adaptive fuzzy inference mechanism by tuning fuzzy parameters. Appl Intell 36(3):698–720. doi:10.1007/s10489-011-0290-3

    Article  Google Scholar 

  58. Gonce-Kocken H, Ahlatcioglu M (2011) A compensatory approach to multiobjective linear transportation problem with fuzzy cost coefficients. Math Probl Eng 2011, 103437. doi:10.1155/2011/103437

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation (Nos. 61105073, 61103140, 61173096, 61020106009) and Zhejiang Provincial Natural Science Foundation (No. R1110679) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jun Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, YJ., Chen, SY. Cooperative particle swarm optimization for multiobjective transportation planning. Appl Intell 39, 202–216 (2013). https://doi.org/10.1007/s10489-012-0405-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-012-0405-5

Keywords

Navigation