Skip to main content
Log in

Communication constraints multi-agent territory exploration task

  • Published:
Applied Intelligence Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A common assumption made in multi-robot research is the connectedness of the underlying network. Although this seems a valid assumption for static networks, it is not realistic for mobile robotic networks, where communication between robots usually is distance dependent. Motivated by this fact, we explicitly consider the communication limitations. This paper extends the LFIP based exploration framework previously developed by Pal et al. (Cogn. Comput. doi:10.1007/s12559-012-9142-7, 2012), to address the Multi-Agent Territory Exploration (MATE-n k ) task under severe communication constraints. In MATE-n k task agents have to explore their environment to find and visit n checkpoints, which only count as “visited” when k agents are present at the same time. In its simplest form, the architecture consists of two layers: an “Exploration layer” consisting of a selection of future locations for the team for further exploring the environment, and “Exploration and CheckpointVisit layer”, consisting of visiting the detected checkpoints while continuing the exploration task. The connectivity maintenance objective is achieved via two ways: (1) The first layer employs a leader-follower concept, where a communication zone is constructed by the leader using a distance transforms method, and (2) In the second layer we make use of a graph theory for characterizing the communication, which employs the adjacency and Laplacian matrices of the graph and their spectral properties. The proposed approach has been implemented and evaluated in several simulated environments and with varying team sizes and communication ranges. Throughout the paper, our conclusions are corroborated by the results from extensive simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Cortes J, Martinez S, Karatas T, Bullo F (2004) Coverage control for mobile sensing networks. IEEE Trans Robot Autom 20(2):243–255

    Article  Google Scholar 

  2. Howard A, Mataric MJ, Sukhatme GS (2002) An incremental self-deployment algorithm for mobile sensor networks. Auton Robots 13:113–126

    Article  MATH  Google Scholar 

  3. Cortes J (2005) Achieving coordination tasks in finite time via nonsmooth gradient flows. In: Proceedings of the 44th IEEE conference on decision and control, and the European control conference, pp 6376–6381

    Chapter  Google Scholar 

  4. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9):1520–1533

    Article  MathSciNet  Google Scholar 

  5. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001

    Article  MathSciNet  Google Scholar 

  6. Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233

    Article  Google Scholar 

  7. Anderson BDO, Yu C, Fidan B, Hendrickx J (2008) Rigid graph control architectures for autonomous formations. IEEE Control Syst Mag 28(6):48–63

    Article  MathSciNet  Google Scholar 

  8. Bullo F, Cortes J, Martinez S (2008) Distributed control of robotic networks. Princeton series in applied mathematics

    Google Scholar 

  9. Wu L, Puig D, Garcia MA (2010) Balanced multi-robot exploration through a global optimization strategy. J Phys Agents 4(1):35–43

    Google Scholar 

  10. Doniec A, Bouraqadi N, Defoort M, Le VT, Stinckwich S (2009) Distributed constraint reasoning applied to multi-robot exploration. In: Proceedings of the 21st IEEE international conference on tools with artificial intelligence, pp 159–166

    Google Scholar 

  11. Jung JH, Park S, Kim S (2010) Multi-robot path finding with wireless multihop communications. IEEE Commun Mag 48(7):126–132

    Article  Google Scholar 

  12. Burgard W, Forx D, Moors M, Simmons R, Thrun S (2000) Collaborative multi-robot exploration. In: Proceedings of the international conference on robotics and automation, pp 476–481

    Google Scholar 

  13. Ko J, Stewart B, Fox D, Konolige K, Limketkai B (2003) A practical decision-theoretic approach to multi-robot mapping and exploration. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 3232–3238

    Google Scholar 

  14. LaValle SM, Hutchinson SA (1996) Optimal motion planning for multiple robots having independent goals. In: Proceedings of the international conference on robotics and automation, pp 2847–2852

    Chapter  Google Scholar 

  15. Svestka P, Overmars MH (1998) Coordinated path planning for multiple robots. Robot Auton Syst 23:126–132

    Article  Google Scholar 

  16. Clark CM, Rock S, Latombe JC (2003) Motion planning for multiple mobile robots using dynamic networks. In: Proceedings of the international conference on robotics and automation, pp 4222–4227

    Google Scholar 

  17. Dias MB, Stentz A (2000) A free market architecture for distributed control of a multirobot system. In: Proceedings of the 6th international conference on intelligent autonomous systems, pp 115–122

    Google Scholar 

  18. Hsu D, Kindel R, Latombe JC, Rock S (2002) Randomized kinodynamic motion planning with moving obstacles. Int J Robot Res 21(3):233–255

    Article  Google Scholar 

  19. Zavlanos MM, Kyriakopoulos KJ (2003) Decentralized motion control of multiple mobile agents. In: Proceedings of the 11th Mediterranean conference on control and automation, pp 1–6

    Google Scholar 

  20. Dias MB, Stenz A (2002) Opportunistic optimization for market-based multirobot control. In: Proceedings IEEE/RSJ international conference on intelligent robots and systems, pp 2714–2720

    Chapter  Google Scholar 

  21. Simmons R, Apfelbaum D, Burgard W, Fox D, Moors M, Thrun S, Younes H (2000) Coordination for multi-robot exploration and mapping. In: Proceedings of the national conference on artificial intelligence, pp 852–858

    Google Scholar 

  22. Yamauchi B (1997) A frontier-based approach for autonomous exploration. In: Proceedings of the IEEE international symposium on computational intelligence in robotics and automation, pp 146–151

    Google Scholar 

  23. Holz D, Basilico N, Amigoni F, Behnke S (2010) Evaluating the efficiency of frontier-based exploration strategies. In: Proceedings of the joint conference of the 41st international symposium on robotics and the 6th German conference on robotics, pp 36–43

    Google Scholar 

  24. Mei Y, Lu YH, Lee CSG, Hu YC (2006) Energy-efficient mobile robot exploration. In: Proceedings of the IEEE international conference on robotics and automation, pp 505–511

    Google Scholar 

  25. Amigoni F, Caglioti V (2010) An information-based exploration strategy for environment mapping with mobile robots. Robot Auton Syst 58(5):684–699

    Article  Google Scholar 

  26. Basilico N, Amigoni F (2009) Exploration strategies based on multicriteria decision making for an autonomous mobile robot. In: Proceedings of the 4th European conference on mobile robots, pp 259–264

    Google Scholar 

  27. Pal A, Tiwari R, Shukla A (2012) Multi robot exploration through pruning frontiers. Adv Mater Res 462:609–616

    Article  Google Scholar 

  28. Franchi A, Freda L, Oriolo G, Vendittelli M (2009) The sensor-based random graph method for cooperative robot exploration. IEEE/ASME Trans Mechatron 14(2):163–175

    Article  Google Scholar 

  29. Wurm K, Stachniss C, Burgard W (2008) Coordinated multi-robot exploration using a segmentation of the environment. In: Proceedings of the international conference on intelligent robots and systems, pp 1160–1165

    Google Scholar 

  30. Vazquez J, Malcolm C (2004) Distributed multirobot exploration maintaining a mobile network. In: Proceedings of the 2nd international IEEE conference on intelligent systems, pp 113–118

    Google Scholar 

  31. Rooker MN, Birk A (2007) Multi-robot exploration under the constraints of wireless networking. Control Eng Pract 15(4):435–445

    Article  Google Scholar 

  32. Mukhija P, Krishna M, Krishna V (2010) A two phase recursive tree propagation based multi-robotic exploration framework with fixed base station constraint. In: Proceedings of the international conference on intelligent robots and systems, pp 1–6

    Google Scholar 

  33. Hoog JD, Cameron S, Visser A (2010) Autonomous multi-robot exploration in communication limited environments. In: Proceedings of the 11th conference towards autonomous robotic systems, pp 1–8

    Google Scholar 

  34. Sheng W, Yang Q, Tan J, Xi N (2006) Distributed multirobot coordination in area exploration. Robot Auton Syst 54(12):945–955

    Article  Google Scholar 

  35. Zlot R, Stentz A, Dias M, Thayer S (2002) Multi-robot exploration controlled by a market economy. In: Proceedings of the IEEE international conference on robotics and automation, pp 3016–3023

    Google Scholar 

  36. Pei Y, Mutka MW, Xi N (2010) Coordinated multi-robot real-time exploration with connectivity and bandwidth awareness. In: Proceedings of the IEEE international conference on robotics and automation, pp 5460–5465

    Google Scholar 

  37. Pal A, Tiwari R, Shukla A (2012) Multi robot exploration in wireless environments. Cogn Comput. doi:10.1007/s12559-012-9142-7 (in press)

    Google Scholar 

  38. Choset H (2001) Coverage for robotics—a survey on recent results. Ann Math Artif Intell 31:113–126

    Article  Google Scholar 

  39. DasGupta B, Hespanha JP, Riehl J, Sontag E (2006) Honey-pot constrained searching with local sensory information. J Nonlinear Anal, Hybrid Syst Appl 65(9):1773–1793

    Article  MathSciNet  MATH  Google Scholar 

  40. Pal A, Tiwari R, Shukla A (2012) Modified A* algorithm for mobile robot path planning. Soft Comput Tech Vis Sci 395:183–193

    Article  Google Scholar 

  41. Pal A, Tiwari R, Shukla A (2011) Multi robot exploration using wave front algorithm. Int J Rapid Manuf 2(4):280–298

    Article  Google Scholar 

  42. Zelinsky A (1992) A mobile robot exploration algorithm. IEEE Trans Robot Autom 8(6):707–717

    Article  Google Scholar 

  43. Kuhn HW (1995) The hungarian method for the assignment problem. Nav Res Logist Q 52(1):83–97

    Google Scholar 

  44. Godsil C, Royle G (2001) Algebraic graph theory. Springer, New York

    Book  MATH  Google Scholar 

  45. Fiedler M (1973) Algebraic connectivity of graphs. Czechoslov Math J 23(98):298–305

    MathSciNet  Google Scholar 

  46. Merris R (1994) Laplacian matrices of a graph: a survey. Linear Algebra Appl 197:143–176

    Article  MathSciNet  Google Scholar 

  47. Biggs N (1993) Algebraic graph theory. Cambridge University Press, Cambridge

    Google Scholar 

  48. Baxter JL, Burke EK, Garibaldi JM, Norman M (2002) Multi-robot search and rescue: a potential field based approach. In: Proceedings of the IEEE international conference on robotics and automation, pp 1217–1222

    Google Scholar 

  49. Kantor GA, Singh S, Peterson R, Rus D, Das A, Kumar V, Pereira G, Spletzer J (2003) Distributed search and rescue with robot and sensor teams. In: Proceedings of the 4th international conference on field and service robotics, pp 327–332

    Google Scholar 

  50. Kulich M, Faigl J, Preucil L (2005) Cooperative planning for heterogeneous teams in rescue operations. In: Proceedings of the IEEE international workshop on safety, security and rescue robotics, pp 230–235

    Google Scholar 

  51. Jones HL, Rock SM, Burns D, Morris S (2002) Autonomous robots in SWAT applications: research, design, and operations challenges. In: Proceedings of the 2002 symposium for the association of unmanned vehicle systems international (AUVSI’02), pp 1–15

    Google Scholar 

  52. Scheible S (2007) Robot helps end standoff: SWAT team uses new technology in arrest of Hingham man suspected of assault. From: http://www.patriotledger.com/articles/2007/04/02/news/news01.txt

  53. Kumar V, Sahin F (2003) Foraging in ant colonies applied to the mine detection problem. In: Proceedings of the IEEE international workshop on soft computing in industrial applications, pp 61–66

    Google Scholar 

  54. Dimarogonas DV, Kyriakopoulos KJ (2006) On the state agreement problem for multiple unicycles with varying communication links. In: Proceedings of the 45th IEEE conference on decision and control, pp 4283–4288

    Chapter  Google Scholar 

  55. Dimarogonas DV, Kyriakopoulos KJ (2007) On the rendezvous problem for multiple nonholonomic agents. IEEE Trans Autom Control 52(5):916–922

    Article  MathSciNet  Google Scholar 

  56. Su H, Wang X, Chen G (2010) Rendezvous of multiple mobile agents with preserved network connectivity. Syst Control Lett 59(5):313–322

    Article  MathSciNet  MATH  Google Scholar 

  57. Yongqian F, Zhang WJ, Zhi-hong G (2004) Behavior selection control systems of multi mobile robots formation. Comput Digit Eng 33(9):4–10

    Google Scholar 

  58. Hong Y, Hu J, Gao L (2006) Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7):1177–1182

    Article  MathSciNet  MATH  Google Scholar 

  59. Anthony LM, Tan KH (1997) High precision formation control of mobile robots using virtual structures autonomous. Auton Robots 4(6):387–403

    Google Scholar 

  60. Lin Z, Francis B, Maggiore M (2007) Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans Autom Control 50(1):121–127

    MathSciNet  Google Scholar 

  61. Olfati-Saber R, Murray RM (2002) Distributed cooperative control of multiple vehicle formations using structural potential functions. In: Proceedings of the international federation of automatic control world congress, pp 346–352

    Google Scholar 

  62. Belta C, Kumar V (2004) Abstraction and control for groups of robots. IEEE Trans Robot 20(5):865–875

    Article  Google Scholar 

  63. Reynolds C (1987) Flocks, birds and schools: a distributed behavioral model. ACM SIGGRAPH Comput Graph 21(4):25–34

    Article  Google Scholar 

  64. Yamauchi B (1998) Frontier-based exploration using multiple robots. In: Proceedings of the 2nd international conference on autonomous agents, pp 47–53

    Chapter  Google Scholar 

  65. Hewlett W (2011) Partially precomputed A*. IEEE Trans Comput Intell AI Games 3(2):119–128

    Article  Google Scholar 

  66. Kang J, Kim S, An S, Oh S (2012) A new approach to simultaneous localization and map building with implicit model learning using neuro evolutionary optimization. Appl Intell 36(1):242–269

    Article  Google Scholar 

  67. Bayrak AG, Polat F (2012) Formation preserving path finding in 3-D terrains. Appl Intell 36(2):348–368

    Article  Google Scholar 

  68. Undeger C, Polat F (2007) RTTES: real-time search in dynamic environments. Appl Intell 27(2):113–129

    Article  Google Scholar 

  69. Nagatani K et al (2011) Multirobot exploration for search and rescue missions: a report on map building in RoboCupRescue 2009. J Field Robot 28:373–387

    Article  Google Scholar 

  70. Wilcox BH (1992) Robotic vehicles for planetary exploration. Appl Intell 2(2):181–193

    Article  MathSciNet  Google Scholar 

  71. Voorbraak F, Massios N (2001) Decision-theoretic planning for autonomous robotic surveillance. Appl Intell 14(3):253–262

    Article  MATH  Google Scholar 

  72. Kensler JA, Agah A (2009) Neural networks-based adaptive bidding with contract net protocol in multi-robot system. Appl Intell 31(3):347–362

    Article  Google Scholar 

  73. Pradhan SK, Parhi DR, Panda AK, Behera RK (2006) Potential field method to navigate several mobile robots. Appl Intell 25(3):321–333

    Article  Google Scholar 

  74. Chohra A, Benmehrez C (1998) Neural navigation approach for intelligent autonomous vehicles (IAV) in partially structured environments. Appl Intell 8(3):219–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshika Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, A., Tiwari, R. & Shukla, A. Communication constraints multi-agent territory exploration task. Appl Intell 38, 357–383 (2013). https://doi.org/10.1007/s10489-012-0376-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-012-0376-6

Keywords

Navigation