Skip to main content

Advertisement

Log in

The parameter extraction of the thermally annealed Schottky barrier diode using the modified artificial bee colony

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, a new method based on the modified artificial bee colony (MABC) algorithm to determine the main characteristic parameters of the Schottky barrier diode such as barrier height, ideality factor and series resistance. For this model, the Ni/n-GaAs/In Schottky barrier diode was produced and annealed at different temperature in a laboratory. The performance of the modified ABC method was compared to that of the basic artificial bee colony (ABC), particle swarm optimization (PSO), differential evolution (DE), genetic algorithm (GA) and simulated annealing (SA). From the results, it is concluded that the modified ABC algorithm is more flexible and effective for the parameter determination than the other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York

    Google Scholar 

  2. Jones FE, Hafer CD, Wood BP, Danner RG, Lonergan MC (2001) Current transport at the p-InP poly(pyrrole) interface. J Appl Phys 90:1001–1010. doi:10.1063/1.1380220

    Article  Google Scholar 

  3. Akkılıç K, Aydın ME, Türüt A (2004) The effect of series resistance on the relationship between barrier heights and ideality factors of inhomogeneous Schottky barrier diodes. Phys Scr 70:364–367. doi:10.1088/0031-8949/70/6/007

    Article  Google Scholar 

  4. Güllü Ö., Aydoğan Ş., Türüt A (2008) Fabrication and electrical characteristics of Schottky diode based on organic material. Microelectron Eng 85:1647–1651. doi:10.1016/j.mee.2008.04.003

    Article  Google Scholar 

  5. Doğan H, Yıldırım N, Türüt A (2008) Thermally annealed Ni/n-GaAs(Si)/In Schottky barrier diodes. Microelectron Eng 85:655–658. doi:10.1016/j.mee.2007.12.007

    Article  Google Scholar 

  6. Robinson GY (1985) In: Wilmsen CW (ed) Physics and chemistry of III–V compound semiconductor interfaces. Plenum Press, New York

    Google Scholar 

  7. Rhoderick EH, Williams RH (1988) Metal–semiconductor contacts. Clarendon Press, Oxford

    Google Scholar 

  8. Mikhelashvili V, Eisenstein G, Uzdin R (2001) Extraction of Schottky diode parameters with a bias dependent barrier height. Solid-State Electron 45:143–148. doi:10.1016/S0038-1101(00)00227-6

    Article  Google Scholar 

  9. Ferhat-Hamida A, Ouennoughi Z, Hoffmann A, Weiss R (2002) Extraction of Schottky diode parameters including parallel conductance using a vertical optimization method. Solid-State Electron 46:615–619. doi:10.1016/S0038-1101(01)00337-9

    Article  Google Scholar 

  10. Norde H (1979) A modified forward I–V plot for Schottky diodes with high series resistance. J Appl Phys 50:5052–5053. doi:10.1063/1.325607

    Article  Google Scholar 

  11. Sato K, Yasumura Y (1985) Study of forward I–V plot for Schottky diodes with high series resistance. J Appl Phys 58:3655–3657. doi:10.1063/1.335750

    Article  Google Scholar 

  12. Lien CD, So FCT, Nicolet MA (1984) Improved forward I–V method for nonideal Schottky diode with high series resistance. IEEE Trans Electron Devices 31:1502–1503. doi:10.1109/T-ED.1984.21739

    Article  Google Scholar 

  13. Gromov D, Pugachevich V (1994) Modified method for the calculation of real Schottky-diode parameters. Appl Phys A, Mater Sci Process 59:331–333. doi:10.1007/BF00348239

    Article  Google Scholar 

  14. Cibils RM, Buitrago RH (1985) Forward I–V plot for nonideal Schottky diodes with high series resistance. J Appl Phys 58:1075–1077. doi:10.1063/1.336222

    Article  Google Scholar 

  15. Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current voltage characteristics. Appl Phys Lett 49:85–87. doi:10.1063/1.97359

    Article  Google Scholar 

  16. Bohlin KE (1986) Generalized Norde plot including determination of the ideality factor. J Appl Phys 60:1223–1224. doi:10.1063/1.337372

    Article  Google Scholar 

  17. Ortiz-Conde A, Ma YS, Thomson J, Santos E, Liou JJ, Grarcía Sánchez FJ (1999) Direct extraction of semiconductor device parameters using lateral optimization method. Solid-State Electron 43:845–848. doi:10.1016/S0038-1101(99)00044-1

    Article  Google Scholar 

  18. Evangelou EK, Papadimitriou L, Dimitriades CA, Giakoumakis GE (1993) Extraction of Schottky diode (and p–n junction) parameters from I–V characteristics. Solid-State Electron 36:1633–1635. doi:10.1016/0038-1101(93)90037-Q

    Article  Google Scholar 

  19. Ortiz-Conde A, García Sánchez FJ (2005) Extraction of non-ideal junction model parameters from explicit analytic solution of its I–V characteristics. Solid-State Electron 49:465–472. doi:10.1016/j.sse.2004.12.001

    Article  Google Scholar 

  20. Li YM (2007) An automatic parameter extraction technique for advanced CMOS device modeling using genetic algorithm. Microelectron Eng 84:260–272. doi:10.1016/j.mee.2006.02.010

    Article  Google Scholar 

  21. Sellami A, Zagrouba M, Boua M, Bessa B (2007) Application of genetic algorithms for the extraction of electrical parameters of multicrystalline silicon. Meas Sci Technol 18:1472–1476. doi:10.1088/0957-0233/18/5/037

    Article  Google Scholar 

  22. Thomas M, Pacha C, Goser K (1999) Parameter determination for nano-scale modeling. Comput Intell 1625:421–426. doi:10.1007/3-540-48774-3_48

    Article  Google Scholar 

  23. Sellai A, Ouennoughi Z (2005) Extraction of illuminated solar cell and Schottky diode parameters using a genetic algorithm. Int J Mod Phys C C(16):1043–1050. doi:10.1142/S0129183105007704

    Article  Google Scholar 

  24. Li F, Mudanai SP, Fan YY, Zhao W, Register LF, Banerjee SK (2003) A simulated annealing approach for automatic extraction of device and material parameters of MOS with SiO2/high-K gate stacks. In: Proceedings of the 15th biennial university/government/industry microelectronics symposium, vol 30, pp 218–221. doi:10.1109/UGIM.2003.1225729

    Google Scholar 

  25. Lakehal B, Dibi Z, Lakhdar N, Dendouga A, Benhaya A (2011) Parameter determination of Schottky barrier diode model using genetic algorithm. In: Communications, computing and control applications international conference (CCCA), 2011, pp 1–4. doi:10.1109/CCCA.2011.6031466

    Chapter  Google Scholar 

  26. Sabat SL, Udgata SK, Abraham A (2010) Artificial bee colony algorithm for small signal model parameter extraction of MESFET. Eng Appl Artif Intell 23:689–694. doi:10.1016/j.engappai.2010.01.020

    Article  Google Scholar 

  27. Wang K, Ye M (2009) Parameter determination of the Schottky barrier diode model using differential evolution. Solid-State Electron 53:234–240. doi:10.1016/j.sse.2008.11.010

    Article  Google Scholar 

  28. Karaboga N, Kockanat S, Dogan H (2011) Parameter determination of the Schottky barrier diode using by artificial bee colony algorithm. In: International symposium on innovations in intelligent systems and applications (INISTA), 2011, pp 6–10. doi:10.1109/INISTA.2011.5946047

    Google Scholar 

  29. Cuevas E, Sención F, Zaldivar D, Pérez-Cisneros M, Sossa H (2012) A multi-threshold segmentation approach based on artificial bee colony optimization. Appl Intell. doi:10.1007/s10489-011-0330-z

    Google Scholar 

  30. Wang K, Zheng YJ (2012) A new particle swarm optimization algorithm for fuzzy optimization of armored vehicle scheme design. Appl Intell. doi:10.1007/s10489-012-0345-0

    Google Scholar 

  31. Garbolino T, Papa G (2010) Genetic algorithm for test pattern generator design. Appl Intell 32:193–204. doi:10.1007/s10489-010-0214-7

    Article  Google Scholar 

  32. Vafashoar R, Meybodi MR, Momeni Azandaryani AH (2012) CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl Intell 36:735–748. doi:10.1007/s10489-011-0292-1

    Article  Google Scholar 

  33. Aribarg T, Supratid S, Lursinsap C (2012) Optimizing the modified fuzzy ant-miner for efficient medical diagnosis. Appl Intell. doi:10.1007/s10489-011-0332-x

    Google Scholar 

  34. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  35. Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia 5(3):6915. http://www.scholarpedia.org/article/Artificial_bee_colony_algorithm

    Article  Google Scholar 

  36. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. doi:10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  37. Karaboga D, Akay B (2011) A modified artificial bee colony algorithm for constrained optimization problems. Appl Soft Comput 11:3021–3031. doi:10.1016/j.asoc.2010.12.001

    Article  Google Scholar 

  38. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Franklin Inst 346:328–348. doi:10.1016/j.jfranklin.2008.11.003

    Article  MathSciNet  MATH  Google Scholar 

  39. Karaboga N, Cetinkaya MB (2011) A novel and efficient algorithm for adaptive filtering: artificial bee colony algorithm. Turk J Electr Eng Comput Sci 19:175–190. doi:10.3906/elk-0912-344

    Google Scholar 

  40. Wang Y, Chen W, Tellambura C (2010) A PAPR reduction method based on artificial bee colony algorithm for OFDM signals. IEEE Trans Wirel Commun 9:2994–2999. doi:10.1109/TWC.2010.081610.100047

    Article  Google Scholar 

  41. dos Santos Coelho L, Alotto P (2011) Gaussian artificial bee colony algorithm approach applied to Loney’s solenoid benchmark problem. IEEE Trans Magn 47:1326–1329. doi:10.1109/TMAG.2010.2087317

    Article  Google Scholar 

  42. Kockanat S (2010) Experimental and theoretical calculating of the characteristic parameters of Metal/III-V semiconductor Schottky diodes. Master of Science Thesis, Department of Electrical and Electronics Engineering. http://tez2.yok.gov.tr/

  43. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697. doi:10.1016/j.asoc.2007.05.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Kockanat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaboga, N., Kockanat, S. & Dogan, H. The parameter extraction of the thermally annealed Schottky barrier diode using the modified artificial bee colony. Appl Intell 38, 279–288 (2013). https://doi.org/10.1007/s10489-012-0372-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-012-0372-x

Keywords

Navigation