Skip to main content
Log in

Abstract

We define the notion of exact completion with respect to an existential elementary doctrine. We observe that the forgetful functor from the 2-category of exact categories to existential elementary doctrines has a left biadjoint that can be obtained as a composite of two others. Finally, we conclude how this notion encompasses both that of the exact completion of a regular category as well as that of the exact completion of a category with binary products, a weak terminal object and weak pullbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Barr, M.: Exact categories. In: Barr, M., Grillet, P., van Osdol, D. (eds.) Exact Categories and Categories of Sheaves. Lecture Notes in Mathematical, vol. 236, pp. 1–120. Springer-Verlag (1971)

  2. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. J. Funct. Program. 13(2), 261–293 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carboni, A.: Analysis non-standard e topos. Rend. Istit. Mat. Univ. Trieste 14(1–2), 1–16 (1982)

    MATH  MathSciNet  Google Scholar 

  4. Carboni, A.: Some free constructions in realizability and proof theory. J. Pure Appl. Algebra 103, 117–148 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carboni, A., Celia Magno, R.: The free exact category on a left exact one. J. Aust. Math. Soc. 33(A), 295–301 (1982)

    Article  MATH  Google Scholar 

  6. Carboni, A., Freyd, P., Scedrov, A.: A categorical approach to realizability and polymorphic types. In: Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) Mathematical Foundations of Programming Language Semantics. Lectures Notes in Computer Science, vol. 298, pp. 23–42. Springer-Verlag, New Orleans (1988)

  7. Carboni, A., Vitale, E.: Regular and exact completions. J. Pure Appl. Algebra 125, 79–117 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carboni, A., Walters, R.: Cartesian bicategories. J. Pure Appl. Algebra 49, 11–32 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coquand, T.: Metamathematical investigation of a calculus of constructions. In: Odifreddi, P. (ed.) Logic in Computer Science, pp. 91–122. Academic Press (1990)

  10. Frey, J.: A 2-categorical analysis of the tripos-to-topos construction. arXiv:1104.2776v1 [math.CT] (2011)

  11. Freyd, P., Scedrov, A.: Categories Allegories. North Holland Publishing Company (1991)

  12. Hughes, J., Jacobs, B.: Factorization systems and fibrations: toward a fibred Birkhoff variety theorem. Electron. Notes Theor. Comput. Sci. 11 (2002)

  13. Hyland, J.M.E., Johnstone, P.T., Pitts, A.M.: Tripos theory. Math. Proc. Camb. Phil. Soc. 88, 205–232 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jacobs, B.: Categorical Logic and Type Theory. North Holland Publishing Company (1999)

  15. Kelly, G.: A note on relations relative to a factorization system. In: Carboni, A., Pedicchio, M., Rosolini, G. (eds.) Category Theory ’90. Lecture Notes in Mathematical, vol. 1488, pp. 249–261. Springer-Verlag, Como (1992)

  16. Lawvere, F.W.: Adjointness in foundations. Dialectica 23, 281–296 (1969)

    Article  MATH  Google Scholar 

  17. Lawvere, F.W.: Diagonal arguments and cartesian closed categories. In: Category Theory, Homology Theory and their Applications, II (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Two), pp. 134–145. Springer (1969)

  18. Lawvere, F.W.: Equality in hyperdoctrines and comprehension schema as an adjoint functor. In: Heller, A. (ed.) Proceedings New York Symposium on Application of Categorical Algebra, pp. 1–14. American Mathematical Society (1970)

  19. Lawvere, F.W., Rosebrugh, R.: Sets for Mathematics. Cambridge University Press (2003)

  20. Maietti, M.: A minimalist two-level foundation for constructive mathematics. Ann. Pure Appl. Logic 160(3), 319–354 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maietti,M., Rosolini, G.: Elementary quotient completion. Theory Appl. Categ. 27(17), 445–463 (2013)

    MATH  Google Scholar 

  22. Maietti, M., Rosolini, G.: Quotient completion for the foundation of constructive mathematics. Log. Univers. 7(3), 371–402 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Maietti, M.E.: Joyal’s arithmetic universe as list-arithmetic pretopos. Theory Appl. Categ. 3(24), 39–83 (2010)

    MathSciNet  Google Scholar 

  24. Nordström, B., Petersson, K., Smith, J.: Programming in Martin Löf’s Type Theory. Clarendon Press, Oxford (1990)

  25. Pasquali, F.: A co-free construction for elementary doctrines. To appear in Applied Categorical Structures (2013)

  26. Pitts, A.M.: Tripos theory in retrospect. Math. Struct. Comput. Sci. 12(3), 265–279 (2002)

    MATH  MathSciNet  Google Scholar 

  27. Succi Cruciani, R.: La teoria delle relazioni nello studio di categorie regolari e di categorie esatte. Riv. Mat. Univ. Parma (4) 1, 143–158 (1975)

    MathSciNet  Google Scholar 

  28. van Oosten, J.: Realizability: An Introduction to its Categorical Side, vol. 152. North Holland Publishing Company (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rosolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maietti, M.E., Rosolini, G. Unifying Exact Completions. Appl Categor Struct 23, 43–52 (2015). https://doi.org/10.1007/s10485-013-9360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-013-9360-5

Keywords

Mathematics Subject Classifications (2010)

Navigation