Skip to main content
Log in

On the Form of Subobjects in Semi-Abelian and Regular Protomodular Categories

Dedicated to my father George Janelidze on the occasion of his sixtieth birthday

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Let Gls denote the category of (possibly large) ordered sets with Galois connections as morphisms between ordered sets. The aim of the present paper is to characterize semi-abelian and regular protomodular categories among all regular categories ℂ, via the form of subobjects of ℂ, i.e. the functor ℂ → Gls which assigns to each object X in ℂ the ordered set Sub(X) of subobjects of X, and carries a morphism f : XY to the induced Galois connection Sub(X) → Sub(Y) (where the left adjoint maps a subobject m of X to the regular image of fm, and the right adjoint is given by pulling back a subobject of Y along f). Such functor amounts to a Grothendieck bifibration over ℂ. The conditions which we use to characterize semi-abelian and regular protomodular categories can be stated as self-dual conditions on the bifibration corresponding to the form of subobjects. This development is closely related to the work of Grandis on “categorical foundations of homological and homotopical algebra”. In his work, forms appear as the so-called “transfer functors” which associate to an object the lattice of “normal subobjects” of an object, where “normal” is defined relative to an ideal of null morphism admitting kernels and cokernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The Joy of Cats. Reprints in Theory Applications of Categories (2006)

  2. Barr, M., Grillet, P.A., van Osdol, D.H.: Exact categories and categories of sheaves. Springer Lect. Notes Math. 236 (1971)

  3. Beutler, E.: An idealtheoretic characterization of varieties of abelian Ω-groups. Algebra Univers. 8, 91–100 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borceux, F.: A survey of semi-abelian categories. Fields Inst. Commun. 43, 27–60 (2004)

    MathSciNet  Google Scholar 

  5. Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-Abelian Categories, Mathematics and its Applications 566. Kluwer (2004)

  6. Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. Springer Lect. Notes Math. 1488, 43–62 (1991)

    Article  MathSciNet  Google Scholar 

  7. Bourn, D.: 3 × 3 lemma and protomodularity. J. Algebra 236, 778–795 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourn, D., Janelidze, G.: Characterization of protomodular varieties of universal algebras. Theory Appl. Categories 11, 143–147 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Brümmer, G.C.L.: Topological categories. Topol. Appl. 18, 27–41 (1984)

    Article  MATH  Google Scholar 

  10. Carboni, A., Janelidze, G.: Modularity and descent. J. Pure Appl. Algebra 99, 255–265 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ehresmann, C.: Sur une notion générale de cohomologie. C. R. Acad. Sci Paris 259, 2050–2053 (1964)

    MATH  MathSciNet  Google Scholar 

  12. Grandis, M.: Transfer functors and projective spaces. Math. Nachr. 118, 147–165 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grandis, M.: On the categorical foundations of homological and homotopical algebra. Cah. Top. Géom. Diff. Catég 33, 135–175 (1992)

    MATH  MathSciNet  Google Scholar 

  14. Grandis, M.: Homological Algebra, The Interplay of Homology with Distributive Lattices and Orthodox Semigroups. World Scientific Publishing Co., Singapore (2012)

    Book  MATH  Google Scholar 

  15. Grandis, M.: Homological Algebra in Strongly Non-Abelian Settings. World Scientific Publishing Co., Singapore (2013)

    Book  MATH  Google Scholar 

  16. Grothendieck, A.: Catégories fibrées et descente, Exposé VI, Revétements Etales et Groupe Fondamental (SGA1), Springer Lect. Notes Math. 224, 145-194 (1971)

  17. Janelidze, G., Márki, L., Tholen, W.: Semi-abelian categories. J. Pure Appl. Algebra 168, 367–386 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Janelidze, Z.: Subtractive categories. Appl. Categ. Struct. 13, 343–350 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Janelidze, Z.: Closedness properties of internal relations V: Linear Mal’tsev conditions. Algebra Univers. 58, 105–117 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Janelidze, Z.: Cover relations on categories. Appl. Categ. Struct. 17, 351–371 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Janelidze, Z.: The pointed subobject functor, 3x3 lemmas, and subtractivity of spans. Theory Appl. Categ. 23, 221–242 (2010)

    MATH  MathSciNet  Google Scholar 

  22. Janelidze, Z.: An axiomatic survey of diagram lemmas for non-abelian group-like structures. J. Algebra 370, 387–401 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Janelidze, Z., Ursini, A.: Split short five lemma for clots and subtractive categories. Appl. Categ. Struct. 19, 233–255 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lavendhomme, R.: La notion d’idéal dans la théorie des catégories. Ann. Soc. Sci. Brux. Sér 1(79), 5–25 (1965)

    MathSciNet  Google Scholar 

  25. Mac Lane, S.: Duality for groups. Bull. Am. Math. Soc. 56, 485–516 (1950)

    Article  MathSciNet  Google Scholar 

  26. Mac Lane, S.: Homology, Die Grundlehren der mathematischen Wissenschaften 114. Academic, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg (1963)

    Google Scholar 

  27. Mac Lane, S.: Categories for the working mathematician 2nd edn. In: Graduate Texts in Mathematics 5. Springer-Verlag, New York-Berlin (1971)

    Google Scholar 

  28. Mac Lane, S., Birkhoff, G.: Algebra 3rd edn. Chelsea Publishing Co., New York (1988)

    Google Scholar 

  29. Michael, F.I.: A note on the five lemma. Appl. Categ. Struct. 21, 441–448 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Michael, F.I.: On a unified categorical setting for homological diagram lemmas. MSc Thesis. Stellenboch University (2011)

  31. Ursini, A.: Osservazioni sulla varietà BIT Boll. Unione Mat. Ital 8, 205–211 (1973)

    Google Scholar 

  32. Wyler, O.: Weakly exact categories. Arch. der Mathematik (Basel) 17, 9–19 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wyler, O.: Top categories and categorical topology. Gen. Topol. Appl. 1, 17–28 (1971)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zurab Janelidze.

Additional information

Partially supported by South African National Research Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janelidze, Z. On the Form of Subobjects in Semi-Abelian and Regular Protomodular Categories. Appl Categor Struct 22, 755–766 (2014). https://doi.org/10.1007/s10485-013-9355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-013-9355-2

Keywords

Mathematics Subject Classification (2010)

Navigation