Skip to main content
Log in

The Fundamental Pro-groupoid of an Affine 2-scheme

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

A natural question in the theory of Tannakian categories is: What if you don’t remember Forget? Working over an arbitrary commutative ring R, we prove that an answer to this question is given by the functor represented by the étale fundamental groupoid π 1(spec(R)), i.e. the separable absolute Galois group of R when it is a field. This gives a new definition for étale π 1(spec(R)) in terms of the category of R-modules rather than the category of étale covers. More generally, we introduce a new notion of “commutative 2-ring” that includes both Grothendieck topoi and symmetric monoidal categories of modules, and define a notion of π 1 for the corresponding “affine 2-schemes.” These results help to simplify and clarify some of the peculiarities of the étale fundamental group. For example, étale fundamental groups are not “true” groups but only profinite groups, and one cannot hope to recover more: the “Tannakian” functor represented by the étale fundamental group of a scheme preserves finite products but not all products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adámek, J.: Colimits of algebras revisited. Bull. Aust. Math. Soc. 17(3), 433–450 (1977)

    Article  MATH  Google Scholar 

  2. Adámek, J., Hébert, M., Rosický, J.: On essentially algebraic theories and their generalizations. Algebra Univers. 41(3), 213–227 (1999)

    Article  MATH  Google Scholar 

  3. Artin, M., Mazur, B.: Etale homotopy. Lecture Notes in Mathematics, vol. 100. Springer-Verlag, Berlin (1986). Reprint of the 1969 original

    Google Scholar 

  4. Adámek, J., Rosický, J.: Reflections in locally presentable categories. Arch. Math. (Brno) 25(1–2), 89–94 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Adámek, J., Rosický, J.: Locally presentable and accessible categories. London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  6. Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar, pp. 1–77. Springer, Berlin (1967)

    Chapter  Google Scholar 

  7. Bichon, J.: Hopf–Galois objects and cogroupoids. http://arxiv.org/abs/1006.3014 (2010). Accessed 15 Oct 2010

  8. Borceux, F., Janelidze, G.: Galois theories. Cambridge Studies in Advanced Mathematics, vol. 72. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  9. Blohmann, C.: Stacky Lie groups. Int. Math. Res. Not. IMRN Art. ID rnn 082, 51 pp. (2008)

    Google Scholar 

  10. Borceux, F.: Handbook of categorical algebra, 1. Encyclopedia of Mathematics and its Applications, vol. 50. Cambridge University Press, Cambridge (1994). Basic category theory

    Book  Google Scholar 

  11. Borceux, F.: Handbook of categorical algebra, 2. Encyclopedia of Mathematics and its Applications, vol. 51. Cambridge University Press, Cambridge (1994). Categories and structures

    Book  MATH  Google Scholar 

  12. Borceux, F.: Handbook of categorical algebra, 3. Encyclopedia of Mathematics and its Applications, vol. 52. Cambridge University Press, Cambridge (1994). Categories of sheaves

    Book  MATH  Google Scholar 

  13. Brandenburg, M.: Tensorial schemes. http://arxiv.org/abs/1110.6523 (2011). Accessed 30 Nov 2011

  14. Brzezinski, T., Wisbauer, R.: Corings and comodules. London Mathematical Society Lecture Note Series, vol. 309. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  15. Deligne, P.: Catégories tannakiennes. In: The Grothendieck Festschrift, vols.2 and 87 of Progr. Math., pp. 111–195. Birkhäuser Boston (1990)

  16. Deligne, P., Milne, J.S., Ogus, A., Shih, K.-y.: Hodge cycles, motives, and Shimura varieties. Lecture Notes in Mathematics, vol. 900. Springer-Verlag, Berlin (1982)

    MATH  Google Scholar 

  17. Etingof, P., Nikshych, D., Ostrik, V.: Fusion categories and homotopy theory. Quantum Topol. 1(3), 209–273 (2010). With an appendix by Ehud Meir

    Article  MathSciNet  MATH  Google Scholar 

  18. Etingof, P., Ostrik, V.: Module categories over representations of SL q (2) and graphs. Math. Res. Lett. 11(1), 103–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Friedlander, E.M.: Étale homotopy of simplicial schemes. Annals of Mathematics Studies, vol. 104. Princeton University Press, Princeton (1982)

    MATH  Google Scholar 

  20. Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. Fr. 90, 323–448 (1962)

    MathSciNet  MATH  Google Scholar 

  21. Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. Lecture Notes in Mathematics, vol. 221. Springer-Verlag, Berlin (1971)

    MATH  Google Scholar 

  22. Joyal, A., Street, R.: An introduction to Tannaka duality and quantum groups. In: Category Theory (Como, 1990), vol. 1488 of Lecture Notes in Math., pp. 413–492. Springer, Berlin (1991)

    Chapter  Google Scholar 

  23. Gregory Maxwell Kelly. Basic concepts of enriched category theory, volume 64 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1982

    MATH  Google Scholar 

  24. Kelly, G.M.: A survey of totality for enriched and ordinary categories. Cahiers Topologie Géom. Différentielle Catég. 27(2), 109–132 (1986)

    Google Scholar 

  25. Kelly, G.M.: Elementary observations on 2-categorical limits. Bull. Aust. Math. Soc. 39(2), 301–317 (1989)

    Article  MATH  Google Scholar 

  26. Kreimer, H.F., Takeuchi, M.: Hopf algebras and Galois extensions of an algebra. Indiana Univ. Math. J. 30(5), 675–692 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. William Lawvere, F.: Functorial semantics of algebraic theories. Proc. Natl. Acad. Sci. U. S. A. 50, 869–872 (1963)

    Article  Google Scholar 

  28. Leinster, T.: Higher operads, higher categories. London Mathematical Society Lecture Note Series, vol. 298. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  29. Linton, F.E.J.: Some aspects of equational categories. In: Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pp. 84–94. Springer, New York (1966)

    Chapter  Google Scholar 

  30. Lurie, J.: Tannaka duality for geometric stacks. http://arxiv.org/abs/math/0412266 (2004). Accessed 20 Nov 2010

  31. Lurie, J.: Derived algebraic geometry ii: Noncommutative algebra. http://arxiv.org/abs/math/0702299 (2007). Accessed 12 Dec 2010

  32. Lurie, J.: Derived algebraic geometry iii: Commutative algebra. http://arxiv.org/abs/math/0703204 (2007). Accessed 12 Dec 2010

  33. Lurie, J.: Derived algebraic geometry v: Structured spaces. http://arxiv.org/abs/0905.0459 (2009). Accessed 12 Dec 2010

  34. Lurie, J.: Higher topos theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  35. Magid, A.R.: The separable Galois theory of commutative rings. Marcel Dekker Inc., New York (1974). Pure and Applied Mathematics, No. 27

  36. Milne, J.S.: Étale cohomology. Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton (1980)

    MATH  Google Scholar 

  37. Mac Lane, S.: Categories for the working mathematician. Graduate Texts in Mathematics, vol. 5. Springer-Verlag, New York (1998)

    MATH  Google Scholar 

  38. Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic. Universitext. Springer-Verlag, New York (1994). A first introduction to topos theory, Corrected reprint of the 1992 edition

    Google Scholar 

  39. Nuss, P.: Galois–Azumaya extensions and the Brauer–Galois group of a commutative ring. Bull. Belg. Math. Soc. Simon Stevin 13(2), 247–270 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Porst, H.-E.: On categories of monoids, comonoids, and bimonoids. Quaest. Math. 31(2), 127–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Street, R.: Fibrations in bicategories. Cahiers Topologie Géom. Différentielle 21(2), 111–160 (1980)

    MathSciNet  MATH  Google Scholar 

  42. Street, R.: Correction to: “Fibrations in bicategories” [Cahiers Topologie Géom. Différentielle 21(2), 111–160 (1980); MR0574662 (81f:18028)]. Cahiers Topologie Géom. Différentielle Catég. 28(1), 53–56 (1987)

  43. Toën, B.: Higher and derived stacks: a global overview. In: Algebraic geometry—Seattle 2005. Part 1. Proc. Sympos. Pure Math., vol. 80, pp. 435–487. Amer. Math. Soc., Providence (2009)

    Google Scholar 

  44. Trimble, T.: Notes on tetracategories. http://math.ucr.edu/home/baez/trimble/tetracategories.html (2006). Accessed 21 Jan 2010

  45. Toën, B., Vezzosi, G.: From HAG to DAG: derived moduli stacks. In: Axiomatic, Enriched and Motivic Homotopy Theory, vol. 131 of NATO Sci. Ser. II Math. Phys. Chem., pp. 173–216. Kluwer Acad. Publ., Dordrecht (2004)

  46. Toën, B., Vezzosi, G.: Homotopical algebraic geometry. I. Topos theory. Adv. Math. 193(2), 257–372 (2005)

    Article  MATH  Google Scholar 

  47. Toën, B., Vezzosi, G.: Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Am. Math. Soc. 193(902), x+224 (2008)

    Google Scholar 

  48. Tang, X., Weinstein, A., Zhu, C.: Hopfish algebras. Pac. J. Math. 231(1), 193–216 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ulbrich, K.-H.: Fibre functors of finite-dimensional comodules. Manuscr. Math. 65(1), 39–46 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ulmer, F.: The adjoint functor and the Yoneda embedding. Ill. J. Math. 15, 355–361 (1971)

    MathSciNet  MATH  Google Scholar 

  51. Ulmer, F.: Locally α-presentable and locally α-generated categories. In: Reports of the Midwest Category Seminar, V (Zurich, 1970), pp. 230–247. Lecture Notes in Math., vol. 195. Springer, Berlin (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Chirvasitu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirvasitu, A., Johnson-Freyd, T. The Fundamental Pro-groupoid of an Affine 2-scheme. Appl Categor Struct 21, 469–522 (2013). https://doi.org/10.1007/s10485-011-9275-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-011-9275-y

Keywords

Mathematics Subject Classifications (2010)

Navigation