Skip to main content
Log in

The Orthogonal Subcategory Problem and the Small Object Argument

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

A classical result of P. Freyd and M. Kelly states that in “good” categories, the Orthogonal Subcategory Problem has a positive solution for all classes \({\mathcal {H}}\) of morphisms whose members are, except possibly for a subset, epimorphisms. We prove that under the same assumptions on the base category and on \({\mathcal {H}}\), the generalization of the Small Object Argument of D. Quillen holds—that is, every object of the category has a cellular \({\mathcal {H}}\)-injective weak reflection. In locally presentable categories, we prove a sharper result: a class of morphisms is called quasi-presentable if for some cardinal λ every member of the class is either λ-presentable or an epimorphism. Both the Orthogonal Subcategory Problem and the Small Object Argument are valid for quasi-presentable classes. Surprisingly, in locally ranked categories (used previously to generalize Quillen’s result), this is no longer true: we present a class \({\mathcal {H}}\) of morphisms, all but one being epimorphisms, such that the orthogonality subcategory \({\mathcal {H}}^\perp\) is not reflective and the injectivity subcategory Inj\(\,{\mathcal {H}}\) is not weakly reflective. We also prove that in locally presentable categories, the injectivity logic and the Orthogonality Logic are complete for all quasi-presentable classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Hébert, M., Sousa, L.: A logic of injectivity. Journal of Homotopy and Related Structures 2, 13-47 (2007)

    Google Scholar 

  2. Adámek, J., Hébert, M., Sousa, L.: A logic of orthogonality. Arch. Math. (Brno) 42, 309–334 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. John Wiley and Sons, New York (1990). Freely available at www.math.uni-bremen.de/∼dmb/acc.pdf

  4. Adámek, J., Herrlich, H., Rosický, J., Tholen, W.: On a generalized small-object argument for the injective subcategory problem. Cahiers Topologie Géom. Différentiele Catég. 43, 83–106 (2002)

    MATH  Google Scholar 

  5. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press (1994)

    Book  MATH  Google Scholar 

  6. Adámek, J., Rosický, J., Trnková, V.: Topological reflections revisited. Trans. Amer. Math. Soc. 108, 605–612 (1990)

    MATH  Google Scholar 

  7. Adámek, J., Sousa, L.: On reflective subcategories of varieties. J. Algebra 276, 685–705 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Adámek, J., Sobral, M., Sousa, L.: A logic of implications in algebra and coalgebra. Algebra Universalis (to appear)

  9. Freyd, P.J., Kelly, G.M.: Categories of continuous functors I. J. Pure Appl. Algebra 2, 169–191 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gabriel, P., Ulmer, F.: Local Präsentierbare Kategorien, Vol. 221 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1971)

    Google Scholar 

  11. Hébert, M.: Algebraically closed and existentially closed substructures in categorical context. Theory Appl. Categ. 12, 270–298 (2004)

    MathSciNet  Google Scholar 

  12. Hébert, M.: \({\mathcal {K}}\)-Purity and orthogonality. Theory Appl. Categ. 12, 355–371 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hébert, M.: λ-presentable morphisms, injectivity and (weak) factorization systems. Appl. Cat. Struct. 14, 273–289 (2006)

    Article  MATH  Google Scholar 

  14. Kelly, M.: A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bull. Austral. Math. Soc. 22, 1–84 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kelly, M.: Basic Concepts of Enriched Category Theory. Cambridge University Press (1982)

  16. Koubek, V.: Every concrete category has a representation by T 2 paracompact topological spaces. Comment. Math. Univ. Carolin. 15, 655–664 (1975)

    MathSciNet  Google Scholar 

  17. Koubek, V., Reiterman, J.: Categorical constructions of free algebras, colimits, and completions of partial algebras. J. Pure Appl. Algebra 14, 195–231 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pasztor, A.: The epis of the categories of ordered algebras and Z-continuous homomorphisms. Cahiers Topologie Géom. Différentielle Catég. 24, 203–214 (1983)

    MATH  MathSciNet  Google Scholar 

  19. Pasztor, A.: Epis of some categories of Z-continuous partial algebras. Acta Cyberne. 6, 111–123 (1983)

    MATH  MathSciNet  Google Scholar 

  20. Quillen, D.: Homotopical Algebra, Vol. 43 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1967)

    Google Scholar 

  21. Roşu, G.: Complete categorical equational deduction. Lecture Notes in Comput. Sci. vol. 2142, pp. 528–538 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Adámek.

Additional information

Financial support by Centre for Mathematics of University of Coimbra and by School of Technology of Viseu is acknowledged by the third author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adámek, J., Hébert, M. & Sousa, L. The Orthogonal Subcategory Problem and the Small Object Argument. Appl Categor Struct 17, 211–246 (2009). https://doi.org/10.1007/s10485-008-9153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-008-9153-4

Keywords

Navigation