Skip to main content
Log in

Time periodic electroosmotic flow of micropolar fluids through microparallel channel

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The time periodic electroosmotic flow of an incompressible micropolar fluid between two infinitely extended microparallel plates is studied. The analytical solutions of the velocity and microrotation are derived under the Debye-H¨uckel approximation. The effects of the related dimensionless parameters, e.g., the micropolar parameter, the frequency, the electrokinetic width, and the wall zeta potential ratio of the upper plate to the lower plate, on the electroosmotic velocity and microrotation are investigated. The results show that the amplitudes of the velocity and the volume flow rate will drop to zero when the micropolar parameter increases from 0 to 1. The effects of the electrokinetic width and the frequency on the velocity of the micropolar fluid are similar to those of the Newtonian fluid. However, the dependence of the microrotation on the related parameters mentioned above is complex. In order to describe these effects clearly, the dimensionless microrotation strength and the penetration depth of the microrotation are defined, which are used to explain the variation of the microrotation. In addition, the effects of various parameters on the dimensionless stress tensor at the walls are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Karniadakis, G., Beskok, A., and Aluru, N. Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York (2005)

    MATH  Google Scholar 

  2. Laser, D. J. and Santiago, J. G. A review of micropumps. Journal of Micromechanics and Microengineering, 14, R35–R64 (2004)

    Article  Google Scholar 

  3. Stone, H. A., Stroock, A. D., and Ajdari, A, Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Engineering flows in small devices: microfluidics toward a lab-on-a-chip 36, 381–411 (2004)

    MATH  Google Scholar 

  4. Abhari, F., Jaafar, H., and Yunus, N. A. M. A comprehensive study of micropumps technologies. International Journal of Electrochemical Science, 7, 9765–9780 (2012)

    Google Scholar 

  5. Burgreen, D. and Nakache, F. R, Electrokinetic flow in ultrafine capillary slits. Electrokinetic flow in ultrafine capillary slits 68, 1084–1091 (1964)

    Google Scholar 

  6. Xie, Z. and Jian, Y, Rotating electroosmotic flow of power-law fluids at high zeta potential. Rotating electroosmotic flow of power-law fluids at high zeta potential 461, 231–239 (2014)

    Google Scholar 

  7. Jian, Y. J., Su, J., Chang, L., Liu, Q. S., and He, G. H, Transient electroosmotic flow of general Maxwell fluids through a slit microchannel. Transient electroosmotic flow of general Maxwell fluids through a slit microchannel 65, 435–447 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Jang, J. and Lee, S. S, Theoretical and experimental study ofMHD micropump. Theoretical and experimental study ofMHD micropump 80, 84–89 (2000)

    Google Scholar 

  9. Pamme, N, Magnetism and microfluidics. Magnetism and microfluidics 6, 24–38 (2006)

    Google Scholar 

  10. Buren, M., Jian, Y., and Chang, L, Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls. Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls 47, 425501 (2014)

    Google Scholar 

  11. Buren, M. and Jian, Y, Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates. Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates 36, 1539–1548 (2015)

    Google Scholar 

  12. Dutta, P. and Beskok, A, Analytical solution of time periodic electroosmotic flows: analogies to Stokes’ second problem. Analytical solution of time periodic electroosmotic flows: analogies to Stokes’ second problem 73, 5097–5102 (2001)

    Google Scholar 

  13. Keh, H. J. and Tseng, H. C, Transient electrokinetic flow in fine capillaries. Transient electrokinetic flow in fine capillaries 242, 450–495 (2001)

    Google Scholar 

  14. Kang, Y., Yang, C., and Huang, X, Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. Dynamic aspects of electroosmotic flow in a cylindrical microcapillary 40, 2203–2221 (2002)

    Google Scholar 

  15. Wang, X. M., Chen, B., and Wu, J. K. A semianalytical solution of periodical electro-osmosis in a rectangular microchannel. Physics of Fluids, 19, 127101 (2007)

    Article  MATH  Google Scholar 

  16. Chakraborty, S. and Ray, S, Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels. Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels 20, 083602 (2008)

    MATH  Google Scholar 

  17. Chakraborty, S. and Srivastava, A. K. A generalized model for time periodic electroosmotic flows with overlapping electrical double layers. Langmuir, 23, 12421 (2007)

    Article  Google Scholar 

  18. Jian, Y., Yang, L., and Liu, Q, Time periodic electro-osmotic flow through a microannulus. Time periodic electro-osmotic flow through a microannulus 22, 042001 (2010)

    MATH  Google Scholar 

  19. Jian, Y., Liu, Q., and Yang, L. AC electroosmotic flow of generalized Maxwell fluids in a rectangular microchannel. Journal of Non-Newtonian Fluid Mechanics, 166, 1304–1314 (2011)

    Article  MATH  Google Scholar 

  20. Liu, Q., Jian, Y., and Yang, L, Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates 166, 478–486 (2011)

    MATH  Google Scholar 

  21. Liu, Q., Jian, Y., and Yang, L, Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel. Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel 23, 102001 (2011)

    MATH  Google Scholar 

  22. Bhattacharyya, A., Masliyah, J. H., and Yang, J, Oscillating laminar electrokinetic flow in infinitely extended circular microchannels. Oscillating laminar electrokinetic flow in infinitely extended circular microchannels 261, 12–20 (2003)

    Google Scholar 

  23. Chang, C. C. and Wang, C. Y, Starting electroosmotic flow in an annulus and in a rectangular channel. Starting electroosmotic flow in an annulus and in a rectangular channel 29, 2970–2979 (2008)

    Google Scholar 

  24. Islam, N. and Wu, J, Microfluidic transport by A Celectroosmosis. Microfluidic transport by A Celectroosmosis 34, 356–361 (2006)

    Google Scholar 

  25. Erickson, D. and Li, D, Analysis of alternating current electroosmotic flows in a rectangular microchannel. Analysis of alternating current electroosmotic flows in a rectangular microchannel 19, 5421–5430 (2003)

    Google Scholar 

  26. Yang, J., Bhattacharyya, A., Masliyah, J. H., and Kwok, D. Y, Oscillating laminar electrokinetic flow in infinitely extended rectangular microchannels. Oscillating laminar electrokinetic flow in infinitely extended rectangular microchannels 261, 21–31 (2003)

    Google Scholar 

  27. Marcos C., Yang, C., Ooi, K. T., Wong, T. N., and Masliyah, J. H, Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel 275, 679–698 (2004)

    Google Scholar 

  28. Minor, M., van der Linde, A. J., van Leeuwen, H. P., and Lyklema, J, Dynamic aspects of electrophoresis and electroosmosis: a new fast method for measuring particle mobilities. Dynamic aspects of electrophoresis and electroosmosis: a new fast method for measuring particle mobilities 189, 370–375 (1997)

    Google Scholar 

  29. Oddy, M. H., Santiago, J. G., and Mikkelsen, J. C, Electrokinetic instability micromixing. Electrokinetic instability micromixing 73, 5822–5832 (2001)

    Google Scholar 

  30. Das, S. and Chakraborty, S, Transverse electrodes for improved DNA hybridization in microchannels. Transverse electrodes for improved DNA hybridization in microchannels 53, 1086–1099 (2007)

    Google Scholar 

  31. Das, S., Subramanian, K., and Chakraborty, S, Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels. Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels 58, 203–217 (2007)

    Google Scholar 

  32. Eringen, A. C, Simple microfluids. Simple microfluids 2, 205–217 (1964)

    MathSciNet  MATH  Google Scholar 

  33. Eringen, A. C, Theory of micropolar fluids. Theory of micropolar fluids 16, 1–18 (1965)

    MathSciNet  Google Scholar 

  34. Eringen, A. C. Microcontinuum Field Theories, II: Fluent Media, Springer, New York (2001)

    MATH  Google Scholar 

  35. Hayakawa, H, Slow viscous flows in micropolar fluids. Slow viscous flows in micropolar fluids 61, 5477–5492 (2000)

    Google Scholar 

  36. Papautsky, I., Brazzle, J., Ameel, T., and Frazier, A. B, Laminar fluid behavior in microchannels using micropolar fluid theory. Laminar fluid behavior in microchannels using micropolar fluid theory 73, 101–108 (1999)

    Google Scholar 

  37. Magyari, E., Pop, I., and Valko, P. P, Stokes’ first problem for micropolar fluids. Stokes’ first problem for micropolar fluids 42, 025503 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Ariman, T., Turk, M. A., and Sylvester, N. D, Microcontinuum fluid mechanics—a review. Microcontinuum fluid mechanics—a review 11, 905–930 (1973)

    MATH  Google Scholar 

  39. Ariman, T., Turk, M. A., and Sylvester, N. D, Application of microcontinum fluid mechanics. Application of microcontinum fluid mechanics 12, 273–293 (1974)

    MATH  Google Scholar 

  40. Stokes, V. K. Theories of Fluids with Microstructures, Springer, New York (1984)

    Book  Google Scholar 

  41. Lukaszewicz, G. Micropolar Fluids: Theory and Application, Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  42. Siddiqui, A. A. and Lakhtakia, A, Steady electroosmotic flow of a micropolar fluid in a microchannel. Steady electroosmotic flow of a micropolar fluid in a microchannel 465, 501–522 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Siddiqui, A. A. and Lakhtakia, A, Debye-Hückel solution for steady electro-osmotic flow of micropolar fluid in cylindrical microcapillary. Debye-Hückel solution for steady electro-osmotic flow of micropolar fluid in cylindrical microcapillary 34 11, 1305–1326 (2013) DOI 10.1007/s10483-013-1747-6

    MathSciNet  MATH  Google Scholar 

  44. Siddiqui, A. A. and Lakhtakia, A, Non-steady electro-osmotic flow of a micropolar fluid in a microchannel. Non-steady electro-osmotic flow of a micropolar fluid in a microchannel 42, 355501 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Misra, J. C., Chandra, S., Shit, G. C., and Kundu, P. K, Electroosmotic oscillatory flow of micropolar fluid in microchannels: application to dynamics of blood flow in microfluidic devices. Electroosmotic oscillatory flow of micropolar fluid in microchannels: application to dynamics of blood flow in microfluidic devices 35 6, 749–766 (2014) DOI 10.1007/s10483-014-1827-6

    MathSciNet  MATH  Google Scholar 

  46. Hunter, J. Zeta Potential in Colloid Science, Academic Press, New York (1981)

    Google Scholar 

  47. Ahmadi, G, Self-similar solution of imcompressible micropolar boundary layer flow over a semiinfinite plate. Self-similar solution of imcompressible micropolar boundary layer flow over a semiinfinite plate 14, 639–646 (1976)

    MATH  Google Scholar 

  48. Rees, D. A. S. and Bassom, A. P, The Blasius boundary-layer flow of a micropolar fluid. The Blasius boundary-layer flow of a micropolar fluid 34, 113–124 (1996)

    MathSciNet  MATH  Google Scholar 

  49. Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., and Castellanos, A, Fluid flow induced by nonuniform A Celectric fields in electrolytes on microelectrodes, I: experimental measurements. Fluid flow induced by nonuniform A Celectric fields in electrolytes on microelectrodes, I: experimental measurements 61, 4011–4018 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Jian.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 11472140 and 11362012), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (No.NJYT-13-A02), the Inner Mongolia Grassland Talent (No. 12000-12102013), and the Opening fund of State Key Laboratory of Nonlinear Mechanics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Jian, Y. & Yang, L. Time periodic electroosmotic flow of micropolar fluids through microparallel channel. Appl. Math. Mech.-Engl. Ed. 37, 769–786 (2016). https://doi.org/10.1007/s10483-016-2081-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2081-6

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation