Skip to main content
Log in

Three-dimensional boundary layer flow of Maxwell nanofluid: mathematical model

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boundary layer approach with the heat source/sink, the Brownian motion, and the thermophoresis effects. The newly developed boundary conditions requiring zero nanoparticle mass flux at the boundary are employed in the flow analysis for the Maxwell fluid. The governing nonlinear boundary layer equations through appropriate transformations are reduced to the coupled nonlinear ordinary differential system. The resulting nonlinear system is solved. Graphs are plotted to examine the effects of various interesting parameters on the non-dimensional velocities, temperature, and concentration fields. The values of the local Nusselt number are computed and examined numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masuda, H., Ebata, A., Teramae, K., and Hishiunma, N. Alteration of thermal conductivity and viscosity of liquid by dispersed ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei, 4, 227–233 (1993)

    Article  Google Scholar 

  2. Choi, S. U. S. and Eastman, J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exposisition, American Society of Mechanical Engineers, San Francisco (1995)

    Google Scholar 

  3. Buongiorno, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  4. Khan, W. A. and Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  5. Turkyilmazoglu, M. Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chemical Engineering Science, 84, 182–187 (2012)

    Article  Google Scholar 

  6. Makinde, O. D., Khan, W. A., and Khan, Z. H. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. International Journal of Heat and Mass Transfer, 62, 526–533 (2013)

    Article  Google Scholar 

  7. Rashidi, M. M., Abelman, S., and Mehr, N. F. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. International Journal of Heat and Mass Transfer, 62, 515–525 (2013)

    Article  Google Scholar 

  8. Sheikholeslami, M. and Ganji, D. D. Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technology, 235, 873–879 (2013)

    Article  Google Scholar 

  9. Mustafa, M., Farooq, M. A., Hayat, T., and Alsaedi, A. Numerical and series solutions for stagnation point flow of nanofluid over an exponentially stretching sheet. PloS One, 8, e61859 (2013)

    Article  Google Scholar 

  10. Kuznetsov, A. V. and Nield, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. International Journal of Thermal Sciences, 77, 126–129 (2014)

    Article  Google Scholar 

  11. Wang, S. and Tan, W. Stability analysis of Soret-driven double-diffusive convection of Maxwell fluid in a porous medium. International Journal of Heat and Fluid Flow, 32, 88–94 (2011)

    Article  Google Scholar 

  12. Fetecau, C., Fetecau, C., Jamil, M., and Mahmood, A. Flow of fractional Maxwell fluid between coaxial cylinders. Archive of Applied Mechanics, 81, 1153–1163 (2011)

    Article  MATH  Google Scholar 

  13. Hayat, T., Shehzad, S. A., Qasim, M., and Obaidat, S. Steady flow of Maxwell fluid with convective boundary conditions. Zeitschrift für Naturforschung A, 66a, 417–422 (2011)

    Article  Google Scholar 

  14. Mukhopadhyay, S. Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink. Chinese Physics Letters, 29, 054703 (2012)

    Article  Google Scholar 

  15. Abel, M. S., Tawade, V., and Shinde, N. The effects of MHD flow and heat transfer for the UCM fluid over a stretching surface in presence of thermal radiation. Advances in Mathematical Physics, 21, 702681 (2012)

    Google Scholar 

  16. Hayat, T., Shehzad, S. A., Al-Sulami, H. H., and Asghar, S. Influence of thermal stratification on the radiative flow of Maxwell fluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35, 381–389 (2013)

    Article  Google Scholar 

  17. Abbasbandy, S., Hayat, T., Ghehsareh, H. R., and Alsaedi, A. MHD Falkner-Skan flow of Maxwell fluid by rational Chebyshev collocation method. Applied Mathematics and Mechanics (English Edition), 34, 921–930 (2013) DOI 10.1007/s10483-013-1717-7

    Article  MathSciNet  Google Scholar 

  18. Shehzad, S. A., Alsaedi, A., and Hayat, T. Hydromagnetic steady flow of Maxwell fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux. PloS One, 8, e68139 (2013)

    Article  Google Scholar 

  19. Liao, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  20. Turkyilmazoglu, M. Solution of the Thomas-Fermi equation with a convergent approach. Communications in Nonlinear Science and Numerical Simulation, 17, 4097–4103 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rashidi, M. M., Keimanesh, M., and Rajvanshi, S. C. Study of pulsatile flow in a porous annulus with the homotopy analysis method. International Journal of Numerical Methods for Heat & Fluid Flow, 22, 971–989 (2012)

    Article  Google Scholar 

  22. Shehzad, S. A., Alsaedi, A., Hayat, T., and Alhuthali, M. S. Three-dimensional flow of an Oldroyd-B fluid with variable thermal conductivity and heat generation/absorption. PloS One, 8, e78240 (2013)

    Article  Google Scholar 

  23. Abbasbandy, S., Hashemi, M. S., and Hashim, I. On convergence of homotopy analysis method and its application to fractional integro-differential equations. Quaestiones Mathematicae, 36, 93–105 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hayat, T., Shehzad, S. A., Alsaedi, A., and Alhothuali, M. S. Three-dimensional flow of Oldroyd-B fluid over surface with convective boundary conditions. Applied Mathematics and Mechanics (English Edition), 34, 489–500 (2013) DOI 10.1007/s10483-013-1685-9

    Article  MathSciNet  Google Scholar 

  25. Hayat, T., Shehzad, S. A., and Alsaedi, A. Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation. Applied Mathematics and Mechanics (English Edition), 34, 823–832 (2013) DOI 10.1007/s10483-013-1710-7

    Article  MATH  MathSciNet  Google Scholar 

  26. Imtiaz, M., Hayat, T., Hussain, M., Shehzad, S. A., Chen, G. Q., and Ahmad, B. Mixed convection flow of nanofluid with Newtonian heating. The European Physical Journal Plus, 129, 97 (2014)

    Article  Google Scholar 

  27. Hayat, T. and Awais, M. Three-dimensional flow of upper-convected Maxwell (UCM) fluid. International Journal for Numerical Methods in Fluids, 66, 875–884 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Harris, J. Rheology and Non-Newtonian Flow, Longman, London (1977)

    MATH  Google Scholar 

  29. Schilchting, H. Boundary Layer Theory, McGraw-Hill, New York (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Muhammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Muhammad, T., Shehzad, S.A. et al. Three-dimensional boundary layer flow of Maxwell nanofluid: mathematical model. Appl. Math. Mech.-Engl. Ed. 36, 747–762 (2015). https://doi.org/10.1007/s10483-015-1948-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1948-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation