Skip to main content
Log in

Study of microstructure and flexural properties of microcellular acrylonitrile-butadiene-styrene nanocomposite foams: experimental results

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper, acrylonitrile-butadiene-styrene (ABS) nanocomposite foams are produced using carbon dioxide through the solid-state batch process. Microcellular closed-cell foams are produced with the relative density ranging from 0.38 to 0.97. The effects of the processing conditions on the density, morphology, and flexural properties of ABS and its nanocomposite foams are studied. It is found that nano-clay particles, as nucleating sites, play an important role in reducing the size of cells and increasing their number in the unit volume of foamed polymer, as well as increasing the flexural modulus of foam through reinforcing its matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martini, J. E. The Production and Analysis of Microcellular Foam, Ph. D. dissertation, MIT (1981)

    Google Scholar 

  2. Kumar, V. and Suh, N. P. A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 30, 1323–1329 (1990)

    Article  Google Scholar 

  3. Murray, R. E., Weller, J. E., and Kumar, V. Solid-state microcellular acrylonitrile-butadynestyrene foams. Cellular Polymers, 19, 413–426 (2000)

    Google Scholar 

  4. Kumar, V. and Weller, J. E. Production of microcellular polycarbonate using carbon dioxide for bubble nucleation. ASME Journal of Engineering for Industry, 116, 413–420 (1994)

    Article  Google Scholar 

  5. Aubert, J. H. and Clough, R. H. Low-density, microcellular polystyrene foams. Polymer, 26, 2047–2054 (1985)

    Article  Google Scholar 

  6. Nadella, K. and Kumar, V. Extrusion of microcellular PVC. 63rd Society of Plastics Engineers, Knovel, New York (2005)

    Google Scholar 

  7. Martinache, J. D., Royer, J. R., Siripurapu, S., Hénon F. E., Genzer, J., Khan, S. A., and Carbonell, R. G. Processing of polyamide 11 with supercritical carbon dioxide. Industrial and Engineering Chemistry Research, 40, 5570–5577 (2001)

    Article  Google Scholar 

  8. Miller, D. and Kumar, V. Fabrication of microcellular HDPE foams in a sub-critical CO2 process. Cellular Polymers, 28, 25–40 (2009)

    Google Scholar 

  9. Goel, S. K. and Beckman, E. J. Generation of microcellular polymeric foams using supercritical carbon dioxide I: effect of pressure and temperature on nucleation. Polymer Engineering and Science, 34, 1137–1147 (1994)

    Article  Google Scholar 

  10. Kumar, V., Nadella, K., Branch, G., and Flinn, B. Extrusion of microcellular foams using presaturated pellets and solid-state nucleation. Cellular Polymers, 23, 369–385 (2004)

    Google Scholar 

  11. Li, W., Nadella, K., and Kumar, V. Manufacturing of micro-scale open-cell polymeric foams using the solid-state foaming process. Transactions of NAMRI/SME, 31, 371–378 (2003)

    Google Scholar 

  12. Kumar, V., VanderWel, M., Weller, J. E., and Seeler, K. A. Experimental characterization of tensile behavior of microcellular polycarbonate foams. ASME Journal of Engineering Materials and Technology, 116, 439–445 (1994)

    Article  Google Scholar 

  13. Lin, C. K., Chen, S. H., Liou, H. Y., and Tian, C. C. Study on mechanical properties of ABS parts in microcellular injection molding process. 63rd Society of Plastics Engineers, Knovel, New York (2005)

    Google Scholar 

  14. Fu, J., Jo, C., and Naguib, H. The effect of the processing parameters on the mechanical properties of PMMA microcellular foams. ANTEC, 2616–2621 (2005)

    Google Scholar 

  15. Bureau, M. and Kumar, V. Fracture toughness of high density polycarbonate microcellular foams. Journal of Cellular Plastics, 42, 229–240 (2006)

    Article  Google Scholar 

  16. Juntunen, R. P., Kumar, V., Weller, J. E., and Bezubic, W. R. Impact strength of high density microcellular PVC foams. Journal of Vinyl and Additive Technology, 6, 93–99 (2000)

    Article  Google Scholar 

  17. Kumar, V., Juntunen, R. P., and Barlow, C. Impact strength of high relative density solid state carbon dioxide blown crystallizable poly (ethylene terephthalate) microcellular foams. Cellular Polymers, 19, 25–37 (2000)

    Google Scholar 

  18. Seeler, K. A. and Kumar, V. Tension-tension fatigue of microcellular polycarbonate: initial results. Journal of Reinforced Plastics and Composites, 12, 359–376 (1993)

    Article  Google Scholar 

  19. Arun, P., Wing, G., Kumar, V., and Tuttle, M. The effect of CO2 on the creep response of polycarbonate. Polymer Engineering and Science, 45, 1639–1644 (2005)

    Article  Google Scholar 

  20. Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J., and Xu, G. Polymer nanocomposite foams. Composites Science and Technology, 65, 2344–2363 (2005)

    Article  Google Scholar 

  21. Jo, C. and Naguib, H. E. Effect of nanoclay and foaming conditions on the mechanical properties of HDPE-clay nanocomposite foams. Journal of Cellular Plastics, 43, 111–121 (2007)

    Article  Google Scholar 

  22. Nam, P. H., Maiti, P., Okamoto, M., Kotaka, T., Nakayama, T., Takada, M., Ohshima, M., Usuki, A., Hasegawa, N., and Okamoto, H. Foam processing and cellular structure of polypropylene/clay nanocomposites. Polymer Engineering and Science, 42, 1907–1918 (2002)

    Article  Google Scholar 

  23. Alian, A. M. and Abu-Zahra, N. H. Mechanical properties of rigid foam PVC-clay nanocomposites. Polymer-Plastics Technology and Engineering, 48, 1014–1019 (2009)

    Article  Google Scholar 

  24. Ito, Y., Yamashita, M., and Okamoto, M. Foam processing and cellular structure of polycarbonatebased nanocomposites. Macromolecular Materials and Engineering, 291, 773–783 (2006)

    Article  Google Scholar 

  25. Zhu, B., Zha, W., Yang, J., Zhang, C., and Lee, L. J. Layered-silicate based polystyrene nanocomposite microcellular foam using supercritical carbon dioxide as blowing agent. Polymer, 51, 2177–2184 (2010)

    Article  Google Scholar 

  26. Yeh, J. M., Chang, K. C., Peng, C. W., Lai, M. C., Hung, C. B., Hsu, S. C., Hwang, S. S., and Lin, H. R. Effect of dispersion capability of organoclay on cellular structure and physical properties of PMMA/clay nanocomposite foams. Materials Chemistry and Physics, 115, 744–750 (2009)

    Article  Google Scholar 

  27. Yuan, M. and Turng, L. S. Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites. Polymer, 46, 7273–7292 (2005)

    Article  Google Scholar 

  28. Ema, Y., Ikeya, M., and Okamoto, M. Foam processing and cellular structure of polylactide-based nanocomposites. Polymer, 47, 5350–5359 (2006)

    Article  Google Scholar 

  29. Hwang, S. S., Liu, S. P., Hsu, P. P., Yeh, J. M., Chang, K. C., and Lai, Y. Z. Effect of organoclay on the mechanical/thermal properties of microcellular injection molded PBT-clay nanocomposites. International Communications in Heat and Mass Transfer, 37, 1036–1043 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mohyeddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohyeddin, A., Fereidoon, A. & Taraghi, I. Study of microstructure and flexural properties of microcellular acrylonitrile-butadiene-styrene nanocomposite foams: experimental results. Appl. Math. Mech.-Engl. Ed. 36, 487–498 (2015). https://doi.org/10.1007/s10483-015-1925-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1925-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation