Skip to main content
Log in

Rhodococcus psychrotolerans sp. nov., isolated from rhizosphere of Deschampsia antarctica

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel actinobacterium, designated strain CMAA 1533T, was isolated from the rhizosphere of Deschampsia antarctica collected at King George Island, Antarctic Peninsula. Strain CMAA 1533T was found to grow over a wide range of temperatures (4–28 °C) and pH (4–10). Macroscopically, the colonies were observed to be circular shaped, smooth, brittle and opaque-cream on most of the culture media tested. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CMAA 1533T belongs to the family Nocardiaceae and forms a distinct phyletic line within the genus Rhodococcus. Sequence similarity calculations indicated that the novel strain is closely related to Rhodococcus degradans CCM 4446T, Rhodococcus erythropolis NBRC 15567T and Rhodococcus triatomae DSM 44892T (≤ 96.9%). The organism was found to contain meso-diaminopimelic acid, galactose and arabinose in whole cell hydrolysates. Its predominant isoprenologue was identified as MK-8(H2) and the polar lipids as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were identified as Summed feature (C16:1 ω6c and/or C16:1 ω7c), C16:0, C18:1 ω9c and 10-methyl C18:0. The G+C content of genomic DNA was determined to be 65.5 mol%. Unlike the closely related type strains, CMAA 1533T can grow at 4 °C but not at 37 °C and was able to utilise adonitol and galactose as sole carbon sources. Based on phylogenetic, chemotaxonomic and physiological data, it is concluded that strain CMAA 1533T (= NRRL B-65465T = DSM 104532T) represents a new species of the genus Rhodococcus, for which the name Rhodococcus psychrotolerans sp. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi K, Katsuta A, Matsuda S, Peng X, Misawa N, Shizuri Y, Kroppenstedt RM, Yokota A, Kasai H (2007) Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evolut Microbiol 57:297–301

    Article  CAS  Google Scholar 

  • Anastasi E, MacArthur I, Scortti M, Alvarez S, Giguère S, Vázquez-Boland JA (2016) Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol 8:3140–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins MD, Goodfellow M (1979) Isoprenoid Quinones in the classification of Coryneform and related bacteria. J Gen Microbiol 110:127–136

    Article  CAS  PubMed  Google Scholar 

  • Creason AL, Davis EW, Putnam ML II, Vandeputte OM, Chang JH (2014) Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus. Front Plant Sci 5:406

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Soc Nat 125:1–15

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Soc Syst Biol 20:406–416

    Article  Google Scholar 

  • Gonzalez JM, Saiz-Jimenez C (2005) A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Sangal V, Jones AL, Sutcliffe IC (2015) Charting stormy waters: a commentary on the nomenclature of the equine pathogen variously named Prescottella equi, Rhodococcus equi and Rhodococcus hoagii. Equine Vet J 47:508–509

    Article  CAS  PubMed  Google Scholar 

  • Gordon RE, Mihm JM (1962) Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 98:628–636

    Article  Google Scholar 

  • Guo QQ, Ming H, Meng XL, Duan YY, Gao R, Zhang JX, Huang JR, Li WJ, Nie GX (2015) Rhodococcus agglutinans sp. nov., an actinobacterium isolated from a soil sample. Antonie Van Leeuwenhoek 107:1271–1280

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Takaziwa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Hwang CY, Lee I, Cho Y, Lee YM, Baek K, Jung YJ, Yang YY, Lee T, Rhee TS, Lee HK (2015) Rhodococcus aerolatus sp. nov., isolated from subarctic rainwater. Int J Syst Evolut Microbiol 65:465–471

    Article  CAS  Google Scholar 

  • Jones AL, Goodfellow M (2015) Rhodococcus Bergey´s manual of systematics bacteriology. Springer, Berlin

    Google Scholar 

  • Jones AL, Sutcliffe IC, Goodfellow M (2013) Proposal to replace the illegitimate genus name Prescottia Jones et al. 2013 with the genus name Prescottella gen. nov. and to replace the illegitimate combination Prescottia equi Jones et al. 2013 with Prescottella equi comb. nov. Antonie Van Leeuwenhoek 103:1405–1407

    Article  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Kuster E, Williams S (1964) Selection of media for isolation of Streptomycetes. Nat Microbiol 3:928–929

    Google Scholar 

  • Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Lechevalier MP, De Bievre C, Lechevalier H (1977) Chemotaxonomy of aerobic Actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260

    Article  CAS  Google Scholar 

  • Li J, Zhao GZ, Long LJ, Wang FZ, Tian XP, Zhang S, Li WJ (2012) Rhodococcus nanhaiensis ap. nov., an actinobacterium isolated from marine sediment. Int J Syst Evolut Microbiol 62:2517–2521

    Article  CAS  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Goker M, Sproer C, Klenk HP (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

    Article  CAS  PubMed  Google Scholar 

  • Minnikin D, Hutchinson I, Caldicott A, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233

    Article  CAS  Google Scholar 

  • Minnikin DE, O`donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematic of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J, Hoskisson PA, Sutcliffe IC (2016) Next-generation systematics: an innovative approach to resolve the structure of complex prokaryotic taxa. Sci Rep 6:38392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI—Tech Note 101:1–6

    Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Silva LJ, Taketani RG, Melo IS, Goodfellow M, Zucchi TD (2013) Streptomyces araujoniae sp. nov.: an actinomycete isolated from a potato tubercle. Antonie Van Leeuwenhoek 103:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Souza DT, da Silva FSP, da Silva LJ, Crevelin EJ, Moraes LAB, Zucchi TD, Melo IS (2017) Saccharopolyspora spongiae sp. nov., a novel actinomycete isolated from the marine sponge Scopalina ruetzleri (Wiedenmayer, 1977). Int J Syst Evolut Microbiol 67:2019–2025

    Article  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Staneck J, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taketani RG, Zucchi TD, Melo IS, Mendes R (2013) Whole-genome shotgun sequencing of Rhodococcus erythropolis strain P27, a highly radiation-resistant actinomycete from Antarctica. Genome Announc 1:e00763

    Google Scholar 

  • Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition- transversion and G+C content biases. Mol Biol Evol 9:678–687

    CAS  PubMed  Google Scholar 

  • Wang Z, Xu J, Li Y, Wang K, Wang Y, Hong Q, Li WJ, Li SP (2010) Rhodococcus jialingiae sp. nov., an actinobacterium isolated from sludge of a carbendazim wastewater treatment facility. Int J Syst Evolut Microbiol 60:378–381

    Article  CAS  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evolut Microbiol 67:1613–1617

    Article  Google Scholar 

  • Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evolut Microbiol 59:589–608

    Article  CAS  Google Scholar 

  • Zopf W (1981) Uber Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilze. Berichte der Deutschen Botanischen Gesellschaft 9:22–28

    Google Scholar 

Download references

Acknowledgements

Silva, L.J. thanks the support from National Council for Scientific and Technological Development [CNPq 141705/2014-0] and [CNPq PROANTAR 407230/2013-0, INCT Criosfera]. Genuario, D. B. and Souza, D.T were supported by FAPESP graduate scholarships 2014/26131-7 and 2013/25505-8, respectively. The authors are grateful to Marcia Maria Parma Leme, João Luiz da Silva, Renato Barbosa Salaroli and Roseli dos Santos Nascimento by their contributions with the laboratory techniques. Finally, thanks are due to the PROANTAR Research Program and Brazilian Navy for logistical support during the OPERANTAR EXPEDITION.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Soares Melo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 895 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.J., Souza, D.T., Genuario, D.B. et al. Rhodococcus psychrotolerans sp. nov., isolated from rhizosphere of Deschampsia antarctica . Antonie van Leeuwenhoek 111, 629–636 (2018). https://doi.org/10.1007/s10482-017-0983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0983-7

Keywords

Navigation