Skip to main content
Log in

Wide distribution range of rhizobial symbionts associated with pantropical sea-dispersed legumes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

To understand the geographic distributions of rhizobia that associated with widely distributed wild legumes, 66 nodules obtained from 41 individuals including three sea-dispersed legumes (Vigna marina, Vigna luteola, and Canavalia rosea) distributed across the tropical and subtropical coastal regions of the world were studied. Partial sequences of 16S rRNA and nodC genes extracted from the nodules showed that only Bradyrhizobium and Sinorhizobium were associated with the pantropical legumes, and some of the symbiont strains were widely distributed over the Pacific. Horizontal gene transfer of nodulation genes were observed within the Bradyrhizobium and Sinorhizobium lineages. BLAST searches in GenBank also identified records of these strains from various legumes across the world, including crop species. However, one of the rhizobial strains was not found in GenBank, which implies the strain may have adapted to the littoral environment. Our results suggested that some rhizobia, which associate with the widespread sea-dispersed legume, distribute across a broad geographic range. By establishing symbiotic relationships with widely distributed rhizobia, the pantropical legumes may also be able to extend their range much further than other legume species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelmoumen H, Filali-Maltouf A, Neyra M et al (1999) Effect of high salts concentrations on the growth of rhizobia and responses to added osmotica. J Appl Microbiol 86:889–898. doi:10.1046/j.1365-2672.1999.00727.x

    Article  CAS  Google Scholar 

  • Aoki S, Ito M, Iwasaki W (2013) From β- to α-proteobacteria: the origin and evolution of rhizobial nodulation genes nodIJ. Mol Biol Evol 30:2494–2508. doi:10.1093/molbev/mst153

    Article  CAS  PubMed  Google Scholar 

  • Bejarano A, Ramírez-Bahena M-H, Velázquez E, Peix A (2014) Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium. Syst Appl Microbiol 37:4–11. doi:10.1016/j.syapm.2014.04.003

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi:10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Hamann O (1984) Plants introduced into Galapagos not by man, but by El Niño? Noticias de Galapagos 39:15–19

    Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174. doi:10.1007/BF02101694

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koppell JH, Parker MA (2012) Phylogenetic clustering of Bradyrhizobium symbionts on legumes indigenous to North America. Microbiology 158:2050–2059. doi:10.1099/mic.0.059238-0

    Article  CAS  PubMed  Google Scholar 

  • Li QQ, Wang ET, Chang YL et al (2011) Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol 61:1981–1988. doi:10.1099/ijs.0.025049-0

    Article  CAS  PubMed  Google Scholar 

  • Lynette KA, Daniel VM (2007) Soil biological fertility: a key to sustainable land use in agriculture. Springer Science & Business Media, Netherlands

    Google Scholar 

  • Menna P, Hungria M, Barcellos FG et al (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332. doi:10.1016/j.syapm.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Zhang D (2014) Transport of bacterial cells toward the Pacific in Northern Hemisphere westerly winds. Atmos Environ 87:138–145. doi:10.1016/j.atmosenv.2013.12.038

    Article  CAS  Google Scholar 

  • Norman AG (1942) Persistence of Rhizobium japonicum in soil. Am Soc Agron 34:499

    Article  Google Scholar 

  • Parker MA (1999a) Mutualism in Metapopulations of Legumes and Rhizobia. Am Nat 153:S48–S60. doi:10.1086/303211

    Article  Google Scholar 

  • Parker MA (1999b) Relationships of Bradyrhizobia from the legumes Apios americana and Desmodium glutinosum. Appl Environ Microbiol 65:4914–4920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker MA (2012) Legumes select symbiosis island sequence variants in Bradyrhizobium. Mol Ecol 21:1769–1778. doi:10.1111/j.1365-294X.2012.05497.x

  • Parker MA, Lafay B, Burdon JJ, Van Berkum P (2002) Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobium. Microbiology 148:2557–2565

    Article  CAS  PubMed  Google Scholar 

  • Parker MA, Malek W, Parker IM (2006) Growth of an invasive legume is symbiont limited in newly occupied habitats. Divers Distrib 12:563–571. doi:10.1111/j.1366-9516.2006.00255.x

    Article  Google Scholar 

  • Peix A, Ramírez-bahena MH, Velázquez E et al (2014) Critical reviews in plant sciences bacterial associations with legumes. Crit Rev Plant Sci 34:17–42. doi:10.1080/07352689.2014.897899

    Article  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Bio Rev 64(1):180–201

    Article  CAS  Google Scholar 

  • Ramírez-Bahena M-H, Chahboune R, Velázquez E et al (2013) Centrosema is a promiscuous legume nodulated by several new putative species and symbiovars of Bradyrhizobium in various American countries. Syst Appl Microbiol 36:392–400. doi:10.1016/j.syapm.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  • Remigi P, Zhu J, Young JPW, Masson-Boivin C (2015) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Velázquez E, Willems A et al (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L. f.) Druce. Appl Environ Microbiol 68(11):5217–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11. doi:10.1016/j.femsec.2005.02.015

    Article  CAS  PubMed  Google Scholar 

  • Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820. doi:10.1038/nrg3522

    Article  CAS  PubMed  Google Scholar 

  • Sonnante G, Spinosa A, Marangi A, Pignone D (1997) Isozyme and RAPD analysis of the genetic diversity within and between Vigna luteola and V. marina. Ann Bot 80:335–741. doi:10.1006/anbo.1997.0511

    Article  Google Scholar 

  • Steenkamp ET, Stepkowski T, Przymusiak A, et al (2008) Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol Phylogenet Evol 48:1131–1144. doi:10.1016/j.ympev.2008.04.032

  • Sy A, Giraud E, Jourand P et al (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220. doi:10.1128/JB.183.1.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, Kajita T, Murata J, Tateishi Y (2006) Phylogeography and genetic structure of Hibiscus tiliaceus—speciation of a pantropical plant with sea-drifted seeds. Mol Ecol 15:2871–2881. doi:10.1111/j.1365-294X.2006.02963.x

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Thompson JA (1960) Inhibition of nodule bacteria by an antibiotic from legume seed coats. Nature 187:619–620

    Article  CAS  PubMed  Google Scholar 

  • Van Cauwenberghe J, Verstraete B, Lemaire B et al (2014) Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst Appl Microbiol 37:613–621. doi:10.1016/j.syapm.2014.08.002

    Article  PubMed  Google Scholar 

  • Van Cauwenberghe J, Michiels J, Honnay O (2015) Effects of local environmental variables and geographical location on the genetic diversity and composition of Rhizobium leguminosarum nodulating Vicia cracca populations. Soil Biol Biochem 90:71–79. doi:10.1016/j.soilbio.2015.08.001

    Article  CAS  Google Scholar 

  • Vatanparast M, Takayama K, Sousa MS et al (2011) Origin of Hawaiian endemic species of Canavalia (Fabaceae) from sea-dispersed species revealed by chloroplast and nuclear DNA sequences. J Jpn Bot 86:15–25

    Google Scholar 

  • Wernegreen JJ, Riley MA (1999) Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16:98–113

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Ichijo T, Sakotani A et al (2012) Global dispersion of bacterial cells on Asian dust. Sci Rep 2:1–6. doi:10.1038/srep00525

    Article  CAS  Google Scholar 

  • Yao Y, Sui XH, Zhang XX et al (2015) Bradyrhizobium erythrophlei sp. nov. and Bradyrhizobium ferriligni sp. nov., isolated from effective nodules of Erythrophleum fordii. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.000183

    Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989 (table of contents)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Tetsuya Sado and R. Tapia-López for experiments Drs. Hidetoshi Kato, J. Torres García, D López, L. Martínez-García, Laura Giraldo, Ms. Adriana and Mr. Takashi Yamamoto for field sampling and Drs. Takeshi Asakawa and Yasuyuki Watano for their valuable comments. This work was supported by JSPS KAKENHI 15H05232 and 19370032 to TK, 26660057 to SA, and MEXT TOBITATE! Young Ambassador Program 2014 to MB. Sample collection was supported by KAKENHI 18370038 to Hidetoshi Kato (Tokyo Metropolitan University) and Fujiwara Natural History Foundation to KT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Kajita.

Additional information

M. Bamba and S. Nakata equally contributed to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamba, M., Nakata, S., Aoki, S. et al. Wide distribution range of rhizobial symbionts associated with pantropical sea-dispersed legumes. Antonie van Leeuwenhoek 109, 1605–1614 (2016). https://doi.org/10.1007/s10482-016-0761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0761-y

Keywords

Navigation