Skip to main content
Log in

Ophiostomatoid fungi associated with mangroves in South Africa, including Ophiostoma palustre sp. nov.

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Mangrove trees are continuously under stress due to environmental and/or anthropogenic pressures, which expose them to attack by pathogens, compromising their survival. Ophiostomatoid fungi cause sap stain and diseases of a wide spectrum of tree species globally. These fungi infect trees through natural, insect, animal and/or human made wounds. During routine surveys of mangrove trees in South Africa, wounds on branches and stems of Avicennia marina were regularly monitored for the presence of ophiostomatoid fungi at ten study sites in the country. The stems of four mangrove species, A. marina, Bruguiera gymnorrhiza, Rhizophora mucronata and Barringtonia racemosa were also wounded and evaluated for the appearance of these fungi. Ophiostomatoid fungi were obtained from the mangrove associate B. racemosa, but not from any of the true mangroves. Analyses of DNA sequence data for the internal transcribed spacer, β-tubulin, calmodulin and translation elongation factor gene regions revealed that the fungi isolated from the wounds on B. racemosa belong to three species in the Ophiostomataceae, including a new taxon described here as Ophiostoma palustre sp. nov. These results suggest that the mangrove associate B. racemosa is more prone to colonization by ophiostomatoid fungi than the true mangroves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams JB, Colloty BM, Bate GC (2004) The distribution and state of mangroves along the coast of Transkei, Eastern Cape Province, South Africa. Wetl Ecol Manag 12:531–541

    Article  Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Brasier CM (1991) Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 115:151–161

    Article  Google Scholar 

  • Brasier CM (2000) Intercontinental spread and continuing evolution of the Dutch elm disease pathogens. In: Dunn CP (ed) The elms: breeding, conservation, and disease management. Kluwer Academic Publishers, Boston, pp 61–72

    Chapter  Google Scholar 

  • Cantrell SA, Dianese JC, Fell J, Gunde-Cimerman Zalar P (2011) Unusual fungal niches. Mycologia 103:1161–1174

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Wingfield MJ, Guarro J, Hernandez-Restrepo M, Sutton DA, Acharya K, Barber PA, Boekhout T, Dimitrov RA, Dueñas M, Dutta AK (2015) Ophiostoma eucalyptigena Barber & Crous, sp. nov. fungal planet description sheets: 331. Persoonia 34:192–193

    Article  Google Scholar 

  • Darriba D, Taboada G, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson RW (1935) Fungi causing stain in logs and lumber in the southern states, including five new species. J Agric Res 50:789–807

    Google Scholar 

  • De Beer ZW, Wingfield MJ (2013) Emerging lineages in the Ophiostomatales. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The ophiostomatoid fungi: expanding frontiers. CBS, Utrecht, pp 21–46

    Google Scholar 

  • De Beer ZW, Wingfield BD, Wingfield MJ (2003) The Ophiostoma piceae complex in the Southern hemisphere: a phylogenetic study. Mycol Res 107:469–476

    Article  CAS  PubMed  Google Scholar 

  • De Beer ZW, Seifert KA, Wingfield MJ (2013) The ophiostomatoid fungi: their dual position in the Sordariomycetes. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The ophiostomatoid fungi: expanding frontiers. CBS Biodiversity Series 12. CBS Fungal Diversity Centre, Utrecht, pp 1–19

  • De Beer ZW, Duong TA, Wingfield MJ (2016) The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Stud Mycol. doi:10.1016/j.simyco.2016.07.001

    PubMed  PubMed Central  Google Scholar 

  • De Errasti A, de Beer ZW, Coetzee MPA, Roux J, Rajchenberg M, Wingfield MJ (2016) Three new species of ophiostomatales from Nothofagus in Patagonia. Mycol Prog 15:1–15

    Article  Google Scholar 

  • Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007) A world without mangroves? Science 317:41–42

    Article  CAS  PubMed  Google Scholar 

  • Duong TA, de Beer ZW, Wingfield BD, Wingfield MJ (2012) Phylogeny and taxonomy of species in the Grosmannia serpens complex. Mycologia 104:715–732

    Article  CAS  PubMed  Google Scholar 

  • Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Mayfield AE, Hanula JL, Eickwort JM, Miller DR (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other lauraceae in the southeastern United States. Plant Dis 92:215–224

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes applications to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Geldenhuis MM, Roux J, Montenegro F, de Beer ZW, Wingfield MJ, Wingfield BD (2004) Identification and pathogenicity of Graphium and Pesotum species from machete wounds on Schizolobium parahybum in Ecuador. Fungal Divers 15:135–149

    Google Scholar 

  • Gibbs JN (1993) The biology of ophiostomatoid fungi causing sapstain in trees and freshly cut logs. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. APS Press, St. Paul, pp 153–160

    Google Scholar 

  • Gilbert GS, Mejía M, Rojas E (2002) Fungal diversity and plant disease in mangrove forests: salt excretion as a possible defense mechanism. Oecologia 132:278–285

    Article  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grobbelaar JW, Aghayeva D, de Beer ZW, Bloomer P, Wingfield MJ, Wingfield BD (2009) Delimitation of Ophiostoma quercus and its synonyms using multiple gene phylogenies. Mycol Prog 8:221–236

    Article  Google Scholar 

  • Grobbelaar JW, de Beer ZW, Bloomer P, Wingfield MJ, Wingfield BD (2010) Ophiostoma tsotsi sp. nov., A wound-infesting fungus of hardwood trees in Africa. Mycopathologia 169:413–423

    Article  PubMed  Google Scholar 

  • Grobbelaar JW, de Beer ZW, Bloomer P, Wingfield MJ, Zhou XD, Wingfield BD (2011) Discovery of Ophiostoma tsotsi on Eucalyptus wood chips in China. Mycoscience 52:111–118

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Harrington TC (1981) Cycloheximide sensitivity as a taxonomic character in Ceratocystis. Mycologia 73:1123–1129

    Article  CAS  Google Scholar 

  • Harrington TC (2005) Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, Inc, New York, pp 257–292

    Google Scholar 

  • Harrington TC, Cobb FW Jr (1988) Leptographium root diseases on conifers. American Phytopathological Society Press, St. Paul

    Google Scholar 

  • Harrington TC, McNew D, Steimel J, Hofstra D, Farrell R (2001) Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch elm disease fungi. Mycologia 93:111–136

    Article  CAS  Google Scholar 

  • Harrington TC, Aghayeva DN, Fraedrich SW (2010) New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 111:337–361

    Article  Google Scholar 

  • Hayslett M, Juzwik J, Moltzan B (2008) Three colopterus beetle species carry the oak wilt fungus to fresh wounds on red oak in Missouri. Plant Dis 92:270–275

    Article  Google Scholar 

  • Hedgcock GG (1906) Studies upon some chromogenic fungi which discolor wood. Mo Bot Gard Annu Rep 17:59–114

    Google Scholar 

  • Henry BW, Moses CS, Richards CA, Riker AJ (1944) Oak wilt, its significance, symptoms and cause. Phytopathology 34:636–647

    Google Scholar 

  • Hutchison LJ, Reid J (1988) Taxonomy of some potential wood-staining fungi from New Zealand. 1. Ophiostomataceae New Zealand J Bot 26:63–81

    Article  Google Scholar 

  • Jacobs K, Wingfield MJ (2001) Leptographium species: tree pathogens, insect associates and agents of blue-stain. The American Phytopathological Society Press, St. Paul

    Google Scholar 

  • Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD (2004) Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res 108:411–418

    Article  PubMed  Google Scholar 

  • Juzwik L, Cease KR, Meyer JM (1998) Acquisition of Ophiostoma quercus and Ceratocystis fagacearum by nitidulids from O. quercus-colonized oak wilt mats. Plant Dis 82:239–243

    Article  Google Scholar 

  • Juzwik J, Harrington TC, McDonald WL (2008) The origin of Ceratocystis fagacearum, the Oak wilt fungus. Annu Rev Phytopathol 46:13–26

    Article  CAS  PubMed  Google Scholar 

  • Kamgan NG, Jacobs K, de Beer ZW, Wingfield MJ, Roux J (2008) Ceratocystis and Ophiostoma species including three new taxa, associated with wounds on native South African trees. Fungal Divers 29:37–59

    Google Scholar 

  • Kamgan NG, Solheim H, de Beer ZW, Grobbelaar JW, Jacobs K, Wingfield MJ, Roux J (2010) Ophiostoma species, including Ophiostoma borealis sp. nov., infecting wounds of native broad-leaved trees in Norway. Cryptogam Mycol 31:285–303

    Google Scholar 

  • Kamgan NG, de Beer ZW, Wingfield MJ, Mohammed C, Carnegie AJ, Pegg GS, Roux J (2011) Ophiostoma species (Ophiostomatales, Ascomycota), including two new taxa on eucalypts in Australia. Aust J Bot 59:283–297

    Article  Google Scholar 

  • Kamgan NG, de Beer ZW, Wingfield MJ, Roux J (2012) A diverse assemblage of Ophiostoma species, including two new taxa on eucalypt trees in South Africa. Mycol Prog 11:515–533

    Article  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kile GA (1993) Plant diseases caused by species of Ceratocystis sensu stricto and Chalara. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. APS Press, St. Paul, pp 173–183

    Google Scholar 

  • Kirisits T (2004) Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Lieutier F, Day KR, Battisti A, Grégoire JC, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Kluwer Academic Press, Utrecht, pp 181–235

    Chapter  Google Scholar 

  • Klepzig KD, Six DL (2004) Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37:189–205

    Google Scholar 

  • Kubono T, Ito S (2002) Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus). Mycoscience 43:255–260

    Article  Google Scholar 

  • Larget B, Simon DL (1999) Markov chain monte carlo algorithms for the bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    Article  CAS  Google Scholar 

  • Malloch D, Blackwell M (1993) Dispersal biology of the ophiostomatoid fungi. In: Wingfield MJ, Seifert KA, JF Webber (eds) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. American Phytopathological Society Press, St. Paul, Minnesota, USA, pp 195–206

  • Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke JO, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89:155–185

    Article  Google Scholar 

  • Osorio JA, Wingfield MJ, de Beer ZW, Roux J (2015) Pseudocercospora mapelanensis sp. nov., associated with a fruit and leaf disease of Barringtonia racemosa in South Africa. Australas Plant Pathol 44:349–359

    Article  Google Scholar 

  • Page RD (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Article  CAS  Google Scholar 

  • Rajkaran A, Adams J, Taylor R (2009) Historic and recent (2006) state of mangroves in small estuaries from Mlalazi to Mtamvuna in KwaZulu-Natal, South Africa. South For 7:287–296

    Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer 1.4. Available at http://beast.bio.ed.ac.uk/Tracer

  • Rayner RW (1970) A mycological colour chart. CMI and British Mycological Society, Kew

    Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biolo 61:539–542

    Article  Google Scholar 

  • Roux J, Wingfield MJ (2009) Ceratocystis species: emerging pathogens of non-native plantation Eucalyptus and Acacia species. South For 7:115–120

    Google Scholar 

  • Roux J, Dunlop R, Wingfield MJ (1999) Susceptibility of elite Acacia mearnsii families to Ceratocystis wilt in South Africa. J For Res 4:187–190

    Article  Google Scholar 

  • Roux J, Van Wyk M, Hatting H, Wingfield MJ (2004) Ceratocystis species infecting stem wounds on Eucalyptus grandis in South Africa. Plant Pathol 53:414–421

    Article  Google Scholar 

  • Roux J, Heath RN, Labuschagne L, Kamgan Nkuekam K, Wingfield MJ (2007) Occurrence of the wattle wilt pathogen, Ceratocystis albifundus on native South African trees. Forest Pathol 37:292–302

    Article  Google Scholar 

  • Seifert KA, Wingfield MJ, Kendrick WB (1993) Sapstain of commercial lumber by species of Ophiostoma and Ceratocystis. In: Wingfield MJ, Seifert KA, Webber J (eds) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. American Phytopathological Society (APS), St. Paul, pp 141–151

    Google Scholar 

  • Seifert KA, de Beer ZW, Wingfield MJ (2013) The ophiostomatoid fungi: expanding frontiers. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Sinclair WA, Howard HL (2005) Diseases of trees and shrubs. Ed. 2. Comstock Publishing Associates, Ithaca, London: Cornell University Press

  • Six DL (2003) Bark beetle-fungus symbioses. In: Bourtzis K, Miller T (eds) Insect Symbioses. CRS Press, Boca Raton, pp 97–114

    Chapter  Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World Atlas of mangroves. Earthscan, Washington DC

    Google Scholar 

  • Steinke TD (1999) Mangroves in South African estuaries. In: Allanson BR, Baird D (eds) Estuaries of South Africa. Cambridge University Press, Cambridge, pp 119–140

    Chapter  Google Scholar 

  • Sugiura N (1978) Further analysis of the data by akaike’s information criterion and the finite corrections. Commun Stat Theory Methods 7:13–26

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarigan M, van Wyk M, Roux J, Tjahjono B, Wingfield MJ (2010) Three new Ceratocystis spp. in the Ceratocystis moniliformis complex from wounds on Acacia mangium and A. crassicarpa. Mycoscience 51:53–67

    Article  CAS  Google Scholar 

  • Tarigan M, Roux J, van Wyk M, Tjahjono B, Wingfield MJ (2011) A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp. nov. in Indonesia. S Afr J Bot 77:292–304

    Article  Google Scholar 

  • Thwaites JM, Farrell RL, Duncan SM, Reay SD, Blanchette RA, Hadar E, Hadar Y, Harrington TC, McNew D (2005) Survey of potential sapstain fungi on Pinus radiata in New Zealand. New Zealand J Bot 43:653–663

    Article  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments at least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51:807–815

    Article  Google Scholar 

  • Van Wyk M, Al Adawi AO, Khan IA, Deadman ML, Al Jahwari AA, Wingfield BD, Ploetz R, Wingfield MJ (2007) Ceratocystis manginecans sp. nov., causal agent of a destructive mango wilt disease in Oman and Pakistan. Fungal Divers 27:213–230

    Google Scholar 

  • Villarreal M, Rubio V, de Troya MT, Arenall F (2005) A new Ophiostoma species isolated from Pinus pinaster in the Iberian Peninsula. Mycotaxon 92:259–268

    Google Scholar 

  • Wang L, Mu M, Li X, Lin P, Wang W (2010) Differentiation between true mangroves and mangrove associates based on leaf traits and salt contents. J Plant Ecol 4:292–301

    Article  CAS  Google Scholar 

  • Wen L, Cai X, Xu F, She Z, Chan WL, Vrijmoed LL, Jones EG, Lin Y (2009) Three metabolites from the mangrove endophytic fungus Sporothrix sp. (# 4335) from the South China Sea. J Org Chem 74:1093–1098

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wingfield MJ, Seifert KA, Webber J (1993) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. The American Phytopathological Society Press, St. Paul

    Google Scholar 

  • Yin M, Wingfield MJ, Zhou X, de Beer ZW (2016) Multigene phylogenies and morphological characterization of five new Ophiostoma spp. associated with spruce-infesting bark beetles in China. Fungal Biol 120:454–470

    Article  PubMed  Google Scholar 

  • Zanzot J, de Beer ZW, Eckhardt L, Wingfield M (2010) A new Ophiostoma species from loblolly pine roots in the southeastern United States. Mycol Prog 9:447–457

    Article  Google Scholar 

  • Zhou X, de Beer ZW, Wingfield MJ (2006) DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol 55:269–277

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Department of Science and Technology (DST) and National Research Foundation (NRF) Center of Excellence in Tree Health Biotechnology (CTHB). We thank Ezemvelo KZN Wildlife (EKZNW), the Isimangaliso Wetland Park and the Eastern Cape Parks & Tourism Agency (ECPTA) for sampling permits as well as their members for assistance in the field. The material was collected under EKZNW permits No. OP 4776, OP 1457 and the ECPTA–RA 00119. We gratefully acknowledge Dr. Hugh Glen for assistance in providing an appropriate species name for the novel taxon. We also acknowledge the fellow post-graduate students at the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria and Dr. Riikka Linakoski (University of Helsinki) for their help during the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanda Roux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osorio, J.A., De Beer, Z.W., Wingfield, M.J. et al. Ophiostomatoid fungi associated with mangroves in South Africa, including Ophiostoma palustre sp. nov.. Antonie van Leeuwenhoek 109, 1555–1571 (2016). https://doi.org/10.1007/s10482-016-0757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0757-7

Keywords

Navigation