Skip to main content

Advertisement

Log in

The CtsR regulator controls the expression of clpC, clpE and clpP and is required for the virulence of Enterococcus faecalis in an invertebrate model

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The intrinsic ruggedness of Enterococcus faecalis is responsible for its widespread distribution in nature and is often viewed as an important virulence determinant. Previously, we showed that the ClpB ATPase is negatively regulated by CtsR and is required for thermotolerance and virulence in a Galleria mellonella invertebrate model. Here, we used in silico, Northern blot and quantitative real-time PCR analyses to identify additional members of the CtsR regulon, namely the clpP peptidase and the clpC and clpE ATPases. When compared to the parent strain, virulence of the ΔctsR strain in G. mellonella was significantly attenuated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  • Abranches J, Candella MM, Wen ZT, Baker HV, Burne RA (2006) Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol 188:3748–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn SJ, Lemos JA, Burne RA (2005) Role of HtrA in growth and competence of Streptococcus mutans UA159. J Bacteriol 187:3028–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chastanet A, Msadek T (2003) clpP of Streptococcus salivarius is a novel member of the dually regulated class of stress response genes in gram-positive bacteria. J Bacteriol 185(2):683–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chastanet A, Prudhomme M, Claverys JP, Msadek T (2001) Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J Bacteriol 183(24):7295–7307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derré I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 31:117–132

    Article  PubMed  Google Scholar 

  • Derré I, Rapoport G, Msadek T (2000) The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees. Mol Microbiol 38(2):335–347

    Article  PubMed  Google Scholar 

  • Fiocco D, Capozzi V, Collins M, Gallone A, Hols P, Guzzo J, Weidmann S, Rieu A, Msadek T, Spano G (2010) Characterization of the CtsR stress response regulon in Lactobacillus plantarum. J Bacteriol 192(3):896–900

    Article  CAS  PubMed  Google Scholar 

  • Flahaut S, Frere J, Boutibonnes P, Auffray Y (1997) Relationship between the thermotolerance and the increase of DnaK and GroEL synthesis in Enterococcus faecalis ATCC19433. J Basic Microbiol 37(4):251–258

    Article  CAS  PubMed  Google Scholar 

  • Frees D, Qazi SN, Hill PJ, Ingmer H (2003) Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 48(6):1565–1578

    Article  CAS  PubMed  Google Scholar 

  • Frees D, Savijoki K, Varmanen P, Ingmer H (2007) Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, gram-positive bacteria. Mol Microbiol 63:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim YM, Kerr AR, Silva NA, Mitchell TJ (2005) Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae. Infect Immun 73(2):730–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karatzas KA, Wouters JA, Gahan CG, Hill C, Abee T, Bennik MH (2003) The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol Microbiol 49(5):1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Lemos JA, Burne RA (2002) Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans. J Bacteriol 184:6357–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miethke M, Hecker M, Gerth U (2006) Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J Bacteriol 188(13):4610–4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair S, Derré I, Msadek T, Gaillot O, Berche P (2000) CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes. Mol Microbiol 35(4):800–811

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Microbiol 31(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Oliveira NEM, Abranches J, Gaca AO, Laport MS, Damaso CR, Bastos MCF, Lemos JA, Marval MG (2011) clpB, a class III heat-shock gene regulated by CtsR, is involved in thermotolerance and virulence of Enterococcus faecalis. Microbiology 157:656–665

    Article  PubMed  Google Scholar 

  • Paulsen IT, Banerjein L, Myers GSA, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherthy BA, Fraser CM (2003) Role of mobile dna in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299(5615):2071–2074

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Biswas I (2013) ClpL is required for folding of CtsR in Streptococcus mutans. J Bacteriol 195(3):576–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varmanen P, Vogensen FK, Hammer K, Palva A, Ingmer H (2003) ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression. J Bacteriol 185(17):5117–5124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo KM, Kim KI, Goldberg AL, Ha DB, Chung CH (1992) The heat-shock protein ClpB in Escherichia coli is a protein-activated ATPase. J Biol Chem 267(28):20429–20434

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Brazilian grants [Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ—Grant E-26/112.649/2012), Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq—Grant 476119/2012-0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES- Grant Proex 23038.001255/2011-29)] and by NIH/NIDCR award DE019783.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Giambiagi-deMarval.

Additional information

Ana Paula Vaz Cassenego and Naira Elane Moreira de Oliveira have contributed equaly for the development of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassenego, A.P.V., de Oliveira, N.E.M., Laport, M.S. et al. The CtsR regulator controls the expression of clpC, clpE and clpP and is required for the virulence of Enterococcus faecalis in an invertebrate model. Antonie van Leeuwenhoek 109, 1253–1259 (2016). https://doi.org/10.1007/s10482-016-0727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0727-0

Keywords

Navigation