Skip to main content
Log in

Photokinesis is magnetic field dependent in the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Candidatus Magnetoglobus multicellularis is a spherical, multicellular, magnetotactic prokaryote (MMP) composed of 10–40 genetically-identical, Gram-negative cells. It is known that monochromatic light of low intensity influences its average swimming velocity, being higher for red light (628 nm) and lower for green light (517 nm). In this study, we determined the effect of light of different wavelengths and intensities on the swimming velocity of Ca. Magnetoglobus multicellularis under different magnetic field intensities. The swimming velocities of several organisms exposed to blue light (469 nm), green light (517 nm) and red light (628 nm) with intensities ranging from 0.36 to 3.68 Wm−2 were recorded under magnetic field intensities ranging from 0.26 to 1.47 Oe. Our results showed that MMPs exposed to green light display consistently lower average swimming velocities compared to other wavelengths of light. We also show for the first time that photokinesis in Ca. Magnetoglobus multicellularis is dependent on the magnetic field being applied. The relationship between light wavelength and intensity and magnetic field strength and swimming velocity in this MMP is therefore complex. Although the mechanism for the observed behaviour is not completely understood, a flavin-containing chromophore may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu F, Martins JL, Silveira TS, Keim CN, Lins de Barros HGP, Filho FJG, Lins U (2007) ‘Candidatus Magnetoglobus multicellularis’, a multicellular, magnetotactic prokaryote from a hypersaline environment. Int J Syst Evol Microbiol 57:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Abreu F, Silva KT, Farina M, Keim CN, Lins U (2008) Greigite magnetosome membrane ultrastructure in ‘Candidatus Magnetoglobus multicellularis’. Int Microbiol 11:75–80

    PubMed  Google Scholar 

  • Acosta-Avalos D, Azevedo LMS, Andrade TS, Lins de Barros H (2012) Magnetic configuration model for the multicelular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis. Eur Biophys J 41:405–413

    Article  PubMed  Google Scholar 

  • Almedia FP, Viana NB, Lins U, Farina M, Keim CN (2013) Swimming behaviour of the multicellular magnetotactic prokaryote ‘Candidatus Magnetoglobus multicellularis’ under applied magnetic fields and ultraviolet light. Antonie Van Leeuwenhoek 103(4):845–857

    Article  Google Scholar 

  • Bazylinsky DA, Frankel RB, Heywood BR, Mann S, King JW, Donaghay PL, Hanson AK (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61:3232–3239

    Google Scholar 

  • Bibikov SI, Barnes LA, Gitin Y, Parkinson JS (2000) Domain organization and Flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc Natl Acad Sci USA 97:5830–5835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blakemore RP (1982) Magnetotactic bacteria. Ann Rev Microbiol 36:217–238

    Article  CAS  Google Scholar 

  • De Azevedo LV, Lins de Barros HGP, Keim CN, Acosta-Avalos D (2013) Effect of light wavelength on motility and magnetic sensibility of the magnetotactic multicellular prokaryote ‘Candidatus Magnetoglobus multicellularis’. Antonie Van Leeuwenhoek 104(3):405–412

    Article  PubMed  Google Scholar 

  • Dederichs A, Schafer A, Hertel R, van den Ende H (1999) Characterization of flavin binding in flagella of Chlamydomonas. Plant Biol 1:315–320

    Article  CAS  Google Scholar 

  • Esquivel DMS, Lins de Barros H (1986) Motion of magnetotactic microorganisms. J Exp Biol 121:153–163

    Google Scholar 

  • Frankel RB, Bazylinski DA, Schuler D (1998) Biomineralization of magnetic iron minerals in bacteria. J Supramol Sci 5:388–390

    Google Scholar 

  • Fujita S, Iseki M, Yoshikawa S, Makino Y, Watanabe M, Motomura T, Kawai H, Murakami A (2005) Identification and characterization of a fluorescent flagellar protein from the brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae): a flavoprotein homologous to old yellow enzyme. Eur J Phycol 40:159–167

    Article  CAS  Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalmijn AJ (1981) Biophysics of geomagnetic field detection. IEEE Trans Magn 17:1113–1124

    Article  Google Scholar 

  • Liedvogel M, Mouritsen H (2010) Cryptochromes-a potential magnetoreceptor: what do we know and what do we want to know? J R Soc Interface 7:S147–S162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lins U, Farina M (2001) Amorphous mineral phases in magnetotactic multicellular aggregates. Arch Microbiol 176:323–328

    Article  CAS  PubMed  Google Scholar 

  • Lins U, Freitas F, Keim CN, Lins de Barros H, Esquivel DMS, Farina M (2003) Simple homemade apparatus for harvesting uncultured magnetotactic microorganisms. Braz J Microbiol 34:111–116

    Article  Google Scholar 

  • Liu B, Liu H, Zhong D, Lin C (2010) Searching for a photocycle of the cryptochrome photoreceptors. Curr Opin Plant Biol 13:578–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martins JL, Silveira TS, Silva KT, Lins U (2009) Salinity dependence of the distribution of multicellular magnetotactic prokaryotes in a hypersaline lagoon. Int Microbiol 12:193–201

    CAS  PubMed  Google Scholar 

  • Pan Y, Lin W, Li J, Wu W, Tian L, Deng C, Liu Q, Zhu R, Winklhofer M, Petersen N (2009) Reduced efficiency of magnetotaxis in magnetotactic coccoid bacteria in higher than geomagnetic fields. Biophys J 97:986–991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perantoni M, Esquivel DMS, Wajnberg E, Acosta-Avalos D, Cernicchiaro G, Lins de Barros HGP (2009) Magnetic properties of the microorganism ‘Candidatus Magnetoglobus multicellularis’. Naturwissenschaften 96:685–690

    Article  CAS  PubMed  Google Scholar 

  • Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W (2010) Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J R Soc Interface 7:S135–S146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva KT, Abreu F, Almeida FP, Keim CN, Farina M, Lins U (2007) Flagellar apparatus of south-seeking many-celled magnetotactic prokaryotes. Microsc Res Tech 70:10–17

    Article  PubMed  Google Scholar 

  • Siponen MI, Adryanczyk G, Ginet N, Arnoux P, Pignol D (2012) Magnetochrome: a c-type cytochrome domain specific to magnetotactic bacteria. Biochem Soc Trans 40:1319–1323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D. Acosta-Avalos thanks CNPq and FAPERJ for financial support and L. V. de Azevedo thanks CBPF for PCI-DTI grant. We also thanks Dr. Donald Ellis of Northwestern University for reading and correcting the English grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Acosta-Avalos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Azevedo, L.V., Acosta-Avalos, D. Photokinesis is magnetic field dependent in the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis. Antonie van Leeuwenhoek 108, 579–585 (2015). https://doi.org/10.1007/s10482-015-0513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0513-4

Keywords

Navigation