Skip to main content
Log in

Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Thermotolerant inulin-utilizing yeast strains were successfully isolated in this study. Among the isolated strains, Kluyveromyces marxianus DBKKU Y-102 was found to be the most effective strain for direct ethanol fermentation at high temperature from fresh Jerusalem artichoke (JA) tubers without inulin hydrolysis under consolidated bioprocessing (CBP). The maximum ethanol concentrations produced by this strain under the optimum culture conditions were 104.83 and 97.46 g L−1 at 37 and 40 °C, respectively. Data from this study clearly demonstrated that the use of thermotolerant inulin-utilizing yeast K. marxianus for ethanol production from fresh JA tubers in the CBP process not only provided high levels of ethanol, but also could eliminate the addition of external enzyme for inulin hydrolysis, which might lead to the reduction of operating costs. The expression of genes involved in carbohydrate metabolism in K. marxianus DBKKU Y-102 during ethanol fermentation was investigated by real-time RT-PCR, and the results revealed that expression levels were distinctive depending on the growth phase and growth conditions. However, among the genes tested, adh4 and tdh2 were highly expressed under high temperature conditions in both exponential- and stationary-growth phases, suggesting that these genes might play a crucial role in acquiring thermotolerance ability in this organism under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexandre H, Charpentier C (1998) Biochemical aspects of stuck and sluggish fermentation in grape must. J Ind Microbiol Biotechnol 20:20–27

    Article  CAS  Google Scholar 

  • Anasontzis GE, Zerva A, Stathopoulou PM, Haralampidis K, Diallinas G, Karagouni AD, Hatzinikolaou DG (2011) Homologous over-expression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J Biotechnol 152:16–23

    Article  CAS  PubMed  Google Scholar 

  • Auesukaree C, Koedrith P, Saenpayavai P, Asvarak T, Benjaphokee S, Sugiyama M, Kaneko Y, Harashima S, Boonchird C (2012) Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. J Biosci Bioeng 114(2):144–149

    Article  CAS  PubMed  Google Scholar 

  • Bai FW, Chen LJ, Zhang Z, Anderson WA, Moo-Young M (2004) Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J Biotechnol 110(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Nigam P, Marchat R (1992) Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45 and 50 °C. World J Microbiol Biotechnol 8:259–263

    Article  CAS  PubMed  Google Scholar 

  • Barthomeuf C, Regerat F, Pourrat H (1991) Production of inulinase by a new mold of Penicillium rugulosum. J Ferment Bioeng 72(6):491–494

    Article  CAS  Google Scholar 

  • Birch RM, Walker GM (2000) Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb Technol 26:678–687

    Article  CAS  PubMed  Google Scholar 

  • Castro RG, Baigorí DM, Siñeriz F (1995) A plate technique for screening of inulin degrading microorganisms. J Microbiol Methods 22:51–56

    Article  Google Scholar 

  • Chi ZM, Chi Z, Zhang T, Liu GL, Yue LX (2009) Inulinase expressing microorganisms and applications of inulinases. Appl Microbiol Biotechnol 82:211–220

    Article  CAS  PubMed  Google Scholar 

  • Chubey BB, Dorell DG (1974) Jerusalem artichoke—a potential fructose crop for the prairies. Can Inst Food Sci Technol J 7:98–106

    Article  CAS  Google Scholar 

  • Cooper TG, Britton C, Brand L, Sumrada R (1979) Addition of basic amino acids prevents G-1 arrest of nitrogen-starved cultures of Saccharomyces cerevisiae. J Bacteriol 137:1447–1448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dorell DG, Chubey BB (1977) Irrigation, fertilizer, harvest dates and storage effects on the reducing sugar and fructose concentration of Jerusalem artichoke tubers. Can J Plant Sci 57:591–596

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JR, Robers PA, Smith F (1956) Colourimetric method for determination of sugar and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    Article  CAS  PubMed  Google Scholar 

  • Ge XY, Zhang WG (2005) A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers. Food Technol Biotechnol 43(3):241–246

    CAS  Google Scholar 

  • Ge XY, Qian H, Zhang WG (2010) Enhancement of l-Lactic acid production in Lactobacilus casei from Jerusalem artichoke tubers by kinetic optimization and citrate metabolism. J Ind Microbiol Biotechnol 20(1):101–109

    CAS  Google Scholar 

  • Grubb CF, Mawson AJ (1993) Effects of elevated solute concentrations on the fermentation of lactose by Kluyveromyces marxianus Y-113. Biotechnol Lett 15:621–626

    Article  CAS  Google Scholar 

  • Harju S, Fedosyuk H, Peterson KR (2004) Rapid isolation of yeast genomic DNA: Bust n’ Grab. BMC Biotechnol 4:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Hashem M, Zohri ANA, Ali MMA (2013) Optimization of the fermentation conditions for ethanol production by new thermotolerant yeast strains of Kluyveromyces sp. Afr J Microbiol Res 7(37):4550–4561

    Google Scholar 

  • Hu N, Yuan B, Sun J, Wang SA, Li FL (2012) Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Cai J, Wang J, Zhu XC, Huang L, Yang ST, Xu ZN (2011) Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresour Technol 102(4):3923–3926

    Article  CAS  PubMed  Google Scholar 

  • Ingledew WM (1999) Alcohol production by Saccharomyces cerevisiae: a yeast primer. In: Jacques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook-a reference for the beverage, fuel and industrial alcohol industries. Nottingham University Press, Nottingham, pp 49–87

    Google Scholar 

  • Ingram LO, Buttke TM (1984) Effects of alcohols on microorganisms. Adv Microb Physiol 25:253–300

    CAS  PubMed  Google Scholar 

  • Jin MJ, Balan V, Gunawan C, Dale BE (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108:1290–1297

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Fell JW (1998) The yeasts: a taxonomic study, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit ({26S}) ribosomal DNA partial sequences. Anton Leeuw Int J G 73(4):331–371

    Article  CAS  Google Scholar 

  • Kusch H, Engelmann S, Bode R, Albrecht D, Morschhäuser J, Hecker M (2008) A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. Int J Med Microbiol 298:291–318

    Article  CAS  PubMed  Google Scholar 

  • Laopaiboon L, Thanonkeo P, Jaisil P, Laopaiboon P (2007) Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J Microbiol Biotechnol 23:1497–1501

    Article  CAS  Google Scholar 

  • Lertwattanasakul N, Sootsuwan K, Limtong S, Thanonkeo P, Yamada M (2007) Comparison of the gene expression patterns of alcohol dehydrogenase isozymes in the thermotolerant yeast Kluyveromyces marxianus and their physiological functions. Biosci Biotechnol Biochem 71(5):1170–1182

    Article  CAS  PubMed  Google Scholar 

  • Lertwattanasakul N, Rodrussamee N, Suprayogi Limtong S, Thanonkeo P, Kosaka T, Yamada M (2011) Utilization capability of sucrose, raffinose and inulin and its less-sensitiveness to glucose repression in thermotolerant yeast Kluyveromyces marxianus DBKU 3-1042. AMB Express 1:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M, Murata M, Fujimoto N, Suprayogi Tsuchikane K, Limtong S, Fujita N, Yamada M (2015) Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. Biotechnol Biofuels 8:47

    Article  PubMed Central  PubMed  Google Scholar 

  • Liang JJ, Zhang MI, Ding M, Mai ZM, Wu SX, Du Y, Feng JX (2014) Alcohol dehydrogenase from Kluyveromyces marxianus: heterologous expression in Escherichia coli and biochemical characterization. BMC Biotechnol 14:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Lim SH, Ryu JM, Lee H, Jeon JH, Sok DE, Choi ES (2011) Ethanol fermentation from Jerusalem artichoke powder using Saccharomyces cerevisiae KCCM50549 without pretreatment for inulin hydrolysis. Bioresour Technol 102(2):2109–2111

    Article  CAS  PubMed  Google Scholar 

  • Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( {2}^{\Delta \Delta {\text {C}}_{\rm T}}\) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  PubMed  Google Scholar 

  • McCracken LD, Gong CS (1982) Fermentation of cellulose and hemicellulose carbohydrates by thermotolerant yeasts. Biotechnol Bioeng 12:91

    CAS  Google Scholar 

  • Mustofa A, Suranto (2009) Activity of Zymomonas mobilis on ethanol products made of cashew nut apple (Anacardium occidentale) with different sources of nitrogen. Nusant Biosci 1:105–109

    Google Scholar 

  • Narendranath NV, Power R (2005) Relationship between pH and medium dissolved solids in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol 71(5):2239–2243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Negro MJ, Ballesteros I, Manzanares P, Oliva JM, Saez F, Ballesteros M (2006) Inulin-containing biomass for ethanol production. Appl Biochem Biotechnol 132(1):922–932

    Article  Google Scholar 

  • Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nuanpeng S, Laopaiboon L, Srinophakun P, Klanrit P, Jaisil P, Laopaiboon P (2011) Ethanol production from sweet sorghum juice under very high gravity conditions: Batch, repeated-batch and scale up fermentation. Electron J Biotechnol 14(1). http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v14n1-2/1259

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233

    Google Scholar 

  • Okamoto K, Nitta Y, Maekawa N, Yanase H (2011) Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme Microb Technol 48:273–277

    Article  CAS  PubMed  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331

    Article  CAS  Google Scholar 

  • Ozmihci S, Kargi F (2007) Comparison of yeast strains for batch ethanol fermentation of cheese-whey powder (CWP) solution. Lett Appl Microbiol 44:602–606

    Article  CAS  PubMed  Google Scholar 

  • Pereira FB, Guimarães PMR, Teixeira JA, Domingues L (2010) Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresour Technol 101:7856–7863

    Article  CAS  PubMed  Google Scholar 

  • Pratt-Marshall PL, Bryce JH, Stewart GG (2003) The effects of osmotic pressure and ethanol on yeast viability and morphology. J Inst Brew 109:218–228

    Article  Google Scholar 

  • Razmovski RN, Sciban MB, Vucurovic VM (2011) Bioethanol production from Jerusalem artichoke by acid hydrolysis. Rom Biotechnol Lett 16(5):6497–6503

    CAS  Google Scholar 

  • Russell I (2003) Understanding yeast fundamentals. In: Jacques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook-a reference for the beverage, fuel and industrial alcohol industries. Nottingham University Press, Nottingham, pp 85–119

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method. A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Silalertruksa T, Gheewala SH (2010) Security of feedstocks supply for future bioethanol production in Thailand. Energy Policy 38(11):7476–7486

    Article  Google Scholar 

  • Sootsuwan K, Irie A, Murata M, Lertwattanasakul N, Thanonkeo P, Yamada M (2007) Thermotolerant Zymomonas mobilis: comparison of ethanol fermentation capability with that of an efficient type strain. Open Biotechnol J 1:52–58

    Article  Google Scholar 

  • Sree NK, Sridhan M, Suresh K, Banat IM, Rao LV (2000) Isolation of thermotolerant, osmotolerant, flocculating, Saccharomyces cerevisiae for ethanol production. Bioresour Technol 72:43–46

    Article  CAS  Google Scholar 

  • Sumrada R, Cooper TG (1978) Basic amino acid inhibition of cell division and macromolecular synthesis of Saccharomyces cerevisiae. J Gen Microbiol 108:45–56

    Article  CAS  PubMed  Google Scholar 

  • Swanton CJ, Cavers PB, Clements DR, Moore MJ (1992) The biology of Canadian weeds: 101 Helianthus tuberosus L. Can J Plant Sci 72:1367–1382

    Article  Google Scholar 

  • Szambelan K, Nowak K, Chrapkowska KJ (2004) Comparison of bacterial and yeast ethanol fermentation yield from Jerusalem artichoke (Helianthus tuberosus L.) tubers pulp and juices. Acta Sci Pol Technol Aliment 3(1):45–53

    CAS  Google Scholar 

  • Szambelan K, Nowak J, Jelen H (2005) The composition of Jerusalem artichoke (Helianthus tuberosus L.) spirits obtained from fermentation with bacteria and yeasts. Eng Life Sci 5:68–71

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) Mega 5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thanonkeo P, Sootsuwan K, Laopaiboon P, Yamada M (2007) Magnesium ions improve growth and ethanol production of Zymomonas mobilis under heat or ethanol stress. Biotechnol 6(1):112–119

    Article  CAS  Google Scholar 

  • Thanonkeo P, Monkeang R, Saksirirat W, Thanonkeo S, Akiyama K (2010) Cloning and molecular characterization of glyceraldehydes-3-phosphate dehydrogenase gene from thermotolerant mushroom, Lentinus polychrous. Afr J Biotechnol 9(22):3242–3251

    CAS  Google Scholar 

  • Thanonkeo P, Thanonkeo S, Charoensuk K, Yamada M (2011) Ethanol production from Jerusalem artichoke (Helianthus tuberosus L.) by Zymomonas mobilis TISTR548. Afr J Biotechnol 10(52):10691–10697

    CAS  Google Scholar 

  • Thomas KC, Ingledew WM (1990) Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl Environ Microbiol 56:2046–2050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker GM (1994) The roles of magnesium in biotechnology. Crit Rev Biotechnol 14:311–354

    Article  CAS  PubMed  Google Scholar 

  • Walter S, Buchner J (2002) Molecular chaperones-cellular machines for protein folding. Angew Chem Int Ed Engl 41(7):1098–1113

    Article  CAS  PubMed  Google Scholar 

  • Yee KL, Rodriquez MJ, Thompson OA, Fu C, Wang ZY, Davison BH, Mielenz JR (2014) Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain. Biotechnol Biofuels 7:75

    Article  PubMed Central  PubMed  Google Scholar 

  • Ying Z, Ma R, Zhao Z, Zhou Z, Lu W, Chen M (2010) ire, an exogenous gene from Deinococcus radiodurans, improves the growth and ethanol production by a Zymomonas mobilis strain under ethanol and acid stresses. J Microbiol Biotechnol 20:1156–1162

    Article  Google Scholar 

  • Yuan WJ, Zhao XQ, Ge XM, Bai FW (2008) Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. J Appl Microbiol 105:2076–2083

    Article  CAS  PubMed  Google Scholar 

  • Yuan WY, Yuan WJ, Chang BL, Chen LJ, Bai FW (2010) Ethanol production from Jerusalem artichoke by SSF fermentation using Kluyveromyces cicerispora. J Biotechnol 150S:367–368

    Article  Google Scholar 

  • Yuan WJ, Chang BL, Ren JG, Liu JP, Bai FW, Li YY (2011) Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J Appl Microbiol 112:38–44

    Article  PubMed  Google Scholar 

  • Zhang T, Chi Z, Zhao CH, Chi ZM, Gong F (2010) Bioethanol production from hydrolysates of inulin and the tuber meal of Jerusalem artichoke by Saccharomyces sp. W0. Bioresour Technol 101(21):8166–8170

    Article  CAS  PubMed  Google Scholar 

  • Zhao CH, Zhang T, Li M, Chi CM (2010) Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochem 45:1121–1126

    Article  Google Scholar 

  • Zoecklein BW, Fugelsang KC, Gump BH, Nury FS (1995) Wine analysis and production. Chapman & Hall, New York

    Book  Google Scholar 

Download references

Acknowledgments

This research was supported by the program of Strategic Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree from the Office of the Higher Education Commission, Thailand. Apart of this works was also supported by the National Research University (NRU) Project of Khon Kaen University for P. Thanonkeo under the Project Number NRU543048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornthap Thanonkeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charoensopharat, K., Thanonkeo, P., Thanonkeo, S. et al. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie van Leeuwenhoek 108, 173–190 (2015). https://doi.org/10.1007/s10482-015-0476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0476-5

Keywords

Navigation