Skip to main content
Log in

Relationship between honeybee nutrition and their microbial communities

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The microbiota and the functional genes actively involved in the process of breakdown and utilization of pollen grains in beebread and bee guts are not yet understood. The aim of this work was to assess the diversity and community structure of bacteria and archaea in Africanized honeybee guts and beebread as well as to predict the genes involved in the microbial bioprocessing of pollen using state of the art ‘post-light’ based sequencing technology. A total of 11 bacterial phyla were found within bee guts and 10 bacterial phyla were found within beebread. Although the phylum level comparison shows most phyla in common, a deeper phylogenetic analysis showed greater variation of taxonomic composition. The families Enterobacteriaceae, Ricketsiaceae, Spiroplasmataceae and Bacillaceae, were the main groups responsible for the specificity of the bee gut while the main families responsible for the specificity of the beebread were Neisseriaceae, Flavobacteriaceae, Acetobacteraceae and Lactobacillaceae. In terms of microbial community structure, the analysis showed that the communities from the two environments were quite different from each other with only 7 % of species-level taxa shared between bee gut and beebread. The results indicated the presence of a highly specialized and well-adapted microbiota within each bee gut and beebread. The beebread community included a greater relative abundance of genes related to amino acid, carbohydrate, and lipid metabolism, suggesting that pollen biodegradation predominantly occurs in the beebread. These results suggests a complex and important relationship between honeybee nutrition and their microbial communities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adbi H (2007) Encyclopedia of measurement and statistics. Sage, Thousand Oaks

    Google Scholar 

  • Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, Walton BM, Jones BM, Corby-Harris V (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 8:e83125

    Article  PubMed Central  PubMed  Google Scholar 

  • Bawa KS (1990) Plant–pollinator interactions in tropical rain forests. Annu Rev Ecol Syst 21:399–422

    Article  Google Scholar 

  • Bawa KS, Bullock SH, Perry DR, Coville RE, Grayum MH (1985) Reproductive biology of tropical lowland Rain Forest Trees. II. Pollination systems. Am J Bot 72:346–356

    Article  Google Scholar 

  • Bluman AG (2007) Elementary statistics: a step by step approach, 6th edn. McGraw Hill Higher Education, New York

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen VB, Davis IW, Richardson DC (2009) KING (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. Prot Sci 18:2403–2409

    Article  CAS  Google Scholar 

  • Corby-Harris V, Maes P, Anderson KE (2014) The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 9:e95056

    Article  PubMed Central  PubMed  Google Scholar 

  • Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, van Engelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Ellis JS, Knight ME, Darvill B, Goulson D (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386

    Article  CAS  PubMed  Google Scholar 

  • Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109:11002–11007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forsgren E, Olofsson TC, Vásquez A, Fries I (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41:99–108

    Article  Google Scholar 

  • Gilliam M (1979) Microbiology of pollen and beebread: the yeasts. Apidologie 10:43–53

    Article  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264

  • Guengerich FP (2007) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21:70–83

    Article  PubMed  Google Scholar 

  • Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206

    Article  CAS  PubMed  Google Scholar 

  • Keijser BJ, Zaura E, Huse SM, Van der Vossen JM, Schuren FH, Montijn RC, Crielaard W (2008) Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 87:1016–1020

    Article  CAS  PubMed  Google Scholar 

  • Koch H, Schmid-Hempel P (2011) Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol 62:121–133

    Article  PubMed  Google Scholar 

  • Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  Google Scholar 

  • Lemos LN, Fulthorpe RR, Triplett EW, Roesch LFW (2011) Rethinking microbial diversity analysis in the high-throughput sequencing era. J Microbiol Methods 86:42–51

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tawa GJ, Wallqvist A (2013) Identifying cytochrome p450 functional networks and their allosteric regulatory elements. PLoS One 8:e81980

    Article  PubMed Central  PubMed  Google Scholar 

  • Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20:619–628

    Article  PubMed  Google Scholar 

  • McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE, Mueller UG (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Mol Ecol 21:1754–1768

    Article  PubMed  Google Scholar 

  • Moran NA, Hansen AK, Powell JE, Sabree ZL (2012) Distinctive gut microbiota of honey bees assessed using deep sampling from Individual worker bees. PLoS One 7:e36393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26:715–721

    Article  CAS  PubMed  Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Bustillo J (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    Article  CAS  PubMed  Google Scholar 

  • Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187–209

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shipp JL, Whitfield GH, Papadopoulos AP (1994) Effectiveness of the bumble bee, Bombus impatiens Cr. (Hymenoptera: Apidae), as a pollinator of greenhouse sweet pepper. Sci Hort 57:29–39

    Article  Google Scholar 

  • Singh B, Mitchison DA (1954) Bactericidal activity of streptomycin and isoniazid against tubercle bacilli. Br Med J 1:130–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vojvodic S, Rehan SM, Anderson KE (2013) Microbial gut diversity of Africanized and European honey bee larval instars. PLoS One 8:e72106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ, Kohn KW, Paull KD (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349

    Article  CAS  PubMed  Google Scholar 

  • Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The National Council for Scientific and Technological Development (CNPq—Brazil), the Coordination for the Improvement of Higher Education Personnel (CAPES—Brazil), the Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS—Brazil) and Programa de Apoio aos Polos Tecnológicos; Process 474-2500/13-9 supported this work. LFW Roesch, JL Franco and FAO Camargo received research fellowships from the CNPq. MA Saraiva received research fellowships from Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS—Brazil). Special thanks are due to the Cooperativa Apícola do Pampa Gaúcho and Mr. Aldo Machado dos Santos for granting access to their apiaries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Fernando Wurdig Roesch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PNG 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraiva, M.A., Zemolin, A.P.P., Franco, J.L. et al. Relationship between honeybee nutrition and their microbial communities. Antonie van Leeuwenhoek 107, 921–933 (2015). https://doi.org/10.1007/s10482-015-0384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0384-8

Keywords

Navigation