Skip to main content

Advertisement

Log in

Exploring the dynamics of bacterial community composition in soil: the pan-bacteriome approach

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

We performed a longitudinal study (repeated observations of the same sample over time) to investigate both the composition and structure of temporal changes of bacterial community composition in soil mesocosms, subjected to three different treatments (water and 5 or 25 mg kg−1 of dried soil Cd2+). By analogy with the pan genome concept, we identified a core bacteriome and an accessory bacteriome. Resident taxa were assigned to the core bacteriome, while occasional taxa were assigned to the accessory bacteriome. Core and accessory bacteriome represented roughly 35 and 50 % of the taxa detected, respectively, and were characterized by different taxonomic signatures from phylum to genus level while 15 % of the taxa were found to be unique to a particular sample. In particular, the core bacteriome was characterized by higher abundance of members of Planctomycetes, Actinobacteria, Verrucomicrobia and Acidobacteria, while the accessory bacteriome included more members of Firmicutes, Clamydiae and Proteobacteria, suggesting potentially different responses to environmental changes of members from these phyla. We conclude that the pan-bacteriome model may be a useful approach to gain insight for modeling bacterial community structure and inferring different abilities of bacteria taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105:11512–11519. doi:10.1073/pnas.0801925105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aravindraja C, Viszwapriya D, Karutha Pandian S (2013) Ultradeep 16S rRNA sequencing analysis of geographically similar but diverse unexplored marine samples reveal varied bacterial community composition. PLoS One 8:e76724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ascher J et al (2009) Sequential extraction and genetic fingerprinting of a forest soil metagenome. Appl Soil Ecol 42:176–181. doi:10.1016/j.apsoil.2009.03.005

    Article  Google Scholar 

  • Bacci G, Bazzicalupo M, Benedetti A, Mengoni A (2014) StreamingTrim 1.0: a Java software for dynamic trimming of 16S rRNA sequence data from metagenetic studies. Mol Ecol Resour 14:426–434. doi:10.1111/1755-0998.12187

    Article  CAS  PubMed  Google Scholar 

  • Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Appl Environ Microbiol 77:3846–3852. doi:10.1128/aem.02772-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartram AK, Jiang X, Lynch MD, Masella AP, Nicol GW, Dushoff J, Neufeld JD (2014) Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm. FEMS Microbiol Ecol 87:403–415

    Article  CAS  PubMed  Google Scholar 

  • Bowen JL, Morrison HG, Hobbie JE, Sogin ML (2012) Salt marsh sediment diversity: a test of the variability of the rare biosphere among environmental replicates. ISME J 6:2014–2023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell BJ, Yu L, Heidelberg JF, Kirchman DL (2011) Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci USA 108:12776–12781. doi:10.1073/pnas.1101405108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceccherini M, Ascher J, Pietramellara G, Mocali S, Viti C, Nannipieri P (2007) The effect of pharmaceutical waste-fungal biomass, treated to degrade DNA, on the composition of eubacterial and ammonia oxidizing populations of soil. Biol Fertil Soils 44:299–306. doi:10.1007/s00374-007-0204-z

    Article  CAS  Google Scholar 

  • Chaparro J, Sheflin A, Manter D, Vivanco J (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499. doi:10.1007/s00374-012-0691-4

    Article  Google Scholar 

  • Chien C, Kuo Y, Chen C, Hung C, Yeh C, Yeh W (2008) Microbial diversity of soil bacteria in agricultural field contaminated with heavy metals. J Environ Sci 20:359–363

    Article  CAS  Google Scholar 

  • Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dineen SM, Aranda R, Anders DL, Robertson JM (2010) An evaluation of commercial DNA extraction kits for the isolation of bacterial spore DNA from soil. J Appl Microbiol 109:1886–1896. doi:10.1111/j.1365-2672.2010.04816.x

    Article  CAS  PubMed  Google Scholar 

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  • Dohrmann AB, Küting M, Jünemann S, Jaenicke S, Schlüter A, Tebbe CC (2013) Importance of rare taxa for bacterial diversity in the rhizosphere of Bt-and conventional maize varieties. ISME J 7:37–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2014) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol. doi:10.1111/1462-2920.12452

  • Duan X, Huang C (2008) Effect of cadmium on diversity of microbial genes in paddy soil. Chin J Appl Environ Biol 14:510–513

    CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred II. Error probabilities. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred I. Accuracy assessment. Genome Res 8:175–185

    Article  CAS  PubMed  Google Scholar 

  • Fritze H et al (2000) Effect of Cd-containing wood ash on the microflora of coniferous forest humus. Fems Microbiol Ecol 32:43–51

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, He J-Z, Zhu Y-G, Zhang J-B, Xu Z, Zhang L-M, Zheng Y-M (2008) Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? ISME J 2:254–264

    Article  CAS  PubMed  Google Scholar 

  • Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R, Gilbert JA (2013) Evidence for a persistent microbial seed bank throughout the global ocean. Proc Natl Acad Sci USA 110:4651–4655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, MacPhee R, Reid G (2010) Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One 5:e15406

    Article  PubMed Central  PubMed  Google Scholar 

  • Gobet A et al (2012) Diversity and dynamics of rare and of resident bacterial populations in coastal sands. ISME J 6:542–553

    Article  PubMed Central  PubMed  Google Scholar 

  • Gomes NCM, Landi L, Smalla K, Nannipieri P, Brookes PC, Renella G (2010) Effects of Cd- and Zn-enriched sewage sludge on soil bacterial and fungal communities. Ecotoxicol Environ Saf 73:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Hardoim CCP, Costa R (2014) Temporal dynamics of prokaryotic communities in the marine sponge Sarcotragus spinosulus. Mol Ecol 23:3097–3112. doi:10.1111/mec.12789

    Article  CAS  PubMed  Google Scholar 

  • Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim TS, Jeong JY, Wells GF, Park HD (2013) General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor. Appl Microbiol Biotechnol 97:1755–1765

    Article  CAS  PubMed  Google Scholar 

  • Kuang J-L et al (2012) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7:1038–1050

    Article  PubMed Central  PubMed  Google Scholar 

  • Lazzaro A, Widmer F, Sperisen C, Frey B (2008) Identification of dominant bacterial phylotypes in a cadmium-treated forest soil. FEMS Microbiol Ecol 63:143–155

    Article  CAS  PubMed  Google Scholar 

  • Logares R et al (2013) Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J 7:937–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorenz N, Hintemann T, Kramarewa T, Katayama A, Yasuta T, Marschner P, Kandeler E (2006) Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem 38:1430–1437

    Article  CAS  Google Scholar 

  • L-X Chen, J-T Li, Y-T Chen, L-N Huang, Z-S Hua, Hu M, Shu W-S (2013) Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol 15:2431–2444. doi:10.1111/1462-2920.12114

    Article  Google Scholar 

  • Masella A, Bartram A, Truszkowski J, Brown D, Neufeld J (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform 13:31

    Article  CAS  Google Scholar 

  • Mengoni A, Schat H, Vangronsveld J (2010) Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331:5–16

    Article  CAS  Google Scholar 

  • Oh J et al (2013) The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res 23:2103–2114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oksanen J et al. (2013) vegan: community ecology package. R package version 2.0-10. http://vegan.r-forge.r-project.org/

  • Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mar Sci 4:449–466. doi:10.1146/annurev-marine-120710-100948

    Article  Google Scholar 

  • Pini F, Frascella A, Santopolo L, Bazzicalupo M, Biondi E, Scotti C, Mengoni A (2012) Exploring the plant-associated bacterial communities in Medicago sativa L. BMC Microbiol 12:78

    Article  CAS  PubMed  Google Scholar 

  • Porter SS, Rice KJ (2013) Trade-offs, spatial heterogeneity, and the maintenance of microbial diversity. Evolution 67:599–608

    Article  PubMed  Google Scholar 

  • Portillo MC, Leff JW, Lauber CL, Fierer N (2013) Cell size distributions of soil bacterial and archaeal taxa. Appl Environ Microbiol 79:7610–7617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Renella G, Brookes PC, Nannipieri P (2002) Cadmium and zinc toxicity to soil microbial biomass and activity. Dev Soil Sci 28:267–273

    Article  Google Scholar 

  • Renella G, Mench M, Landi L, Nannipieri P (2005) Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils. Soil Biol Biochem 37:133–139

    Article  CAS  Google Scholar 

  • Safriel UN, Ritte U (1980) Criteria for the identification of potential colonizers. Biol J Linn Soc 13:287–297

    Article  Google Scholar 

  • Sánchez O, Ferrera I, González JM, Mas J (2013) Assessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes. Microb Biotechnol 6:435–442

    Article  PubMed Central  PubMed  Google Scholar 

  • Sheoran V, Sheoran AS, Poonam P (2008) Remediation techniques for contaminated soils. Environ Eng Manag J 7:379–387

    CAS  Google Scholar 

  • Smith BC et al (2012) The cervical microbiome over 7 years and a comparison of methodologies for its characterization. PLoS One 7:e40425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sogin ML et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120. doi:10.1073/pnas.0605127103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Székely AJ, Langenheder S (2014) The importance of species sorting differs between habitat generalists and specialists in bacterial communities. Fems Microbiol Ecol 87:102–112

    Article  PubMed  Google Scholar 

  • Tamaki H et al (2010) Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10. Int J Syst Evol Microbiol 61:1442–1447. doi:10.1099/ijs.0.025643-0

    Article  PubMed  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/aem.00062-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wegner KM, Volkenborn N, Peter H, Eiler A (2013) Disturbance induced decoupling between host genetics and composition of the associated microbiome. BMC Microbiol 13:252

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu XH, Liu CY, Li RY, Wang XR (2013) Impacts of cadmium stress on soil microbial and enzyme activities under laboratory conditions. J Food Agric Environ 11:1730–1734

    Google Scholar 

  • Zhang Y, Zhang X, Zhang H, He Q, Zhou Q, Su Z, Zhang C (2009) Responses of soil bacteria to long-term and short-term cadmium stress as revealed by microbial community analysis. Bull Environ Contam Toxicol 82:367–372

    Article  CAS  PubMed  Google Scholar 

  • Zhou J et al (2014) Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci USA 111:E836–E845. doi:10.1073/pnas.1324044111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ente Cassa di Risparmio di Firenze (Grant No. 2010/4384 “Centro di Metagenomica del suolo”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Mengoni.

Additional information

Giovanni Bacci and Maria Teresa Ceccherini have equally contributed to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 974 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacci, G., Ceccherini, M.T., Bani, A. et al. Exploring the dynamics of bacterial community composition in soil: the pan-bacteriome approach. Antonie van Leeuwenhoek 107, 785–797 (2015). https://doi.org/10.1007/s10482-014-0372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0372-4

Keywords

Navigation