Skip to main content
Log in

Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Spore suspensions of Aspergillus oryzae NRRL 3484 were subjected to mutagenesis using ultraviolet-irradiation followed by chemical treatments to improve the biosynthesis of cellulase. Ten mutant strains namely UEAC7, UEAR5, UNAC4, UNAC16, UNAR19, UNBC7, UNBR3, UNBR10, UNBR23 and UNBR25 were selected and their extracellular cellulase activities were assayed. Mutant UNAC4 gave the highest cellulase production [2,455 ± 28 U/g-dry substrate (ds) for filter paper-ase (FP-ase)] in a yield 4-fold exceeding that of the wild type strain (578 ± 5.0 U/g-ds for FP-ase). Rice straw (RS) was used as a sole carbon source for the enzyme production at a concentration of 10 % (w/v). Maximum cellulase production was achieved at initial medium pH 5.5, initial moisture content 77 % and an incubation temperature 28 °C on the fifth day of growth. NH4Cl proved to be the suitable added nitrogen source for maximum enzyme production followed by peptone. These results clearly indicate the cost-effectiveness of solid state fermentation technology in the economic production of extracellular cellulase. The hyper-production of cellulase by mutant strain UNAC4 has potential for industrial processes that convert lignocellulosic material (e.g. RS) into products of commercial value such as glucose and biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali S, Sayed A, Sarker RI, Alam R (1991) Factors affecting cellulase production by Aspergillus terreus using water hyacinth. World J Microbiol Biotechnol 7:62–66

    CAS  Google Scholar 

  • Allen AL, Andreotti RE (1982) Cellulase production in continuous and fed batch culture by Trichoderma reesei MCG80. Biotechnol Bioeng 12:451–459

    CAS  Google Scholar 

  • Anita DD, Sridhar KR, Bhat R (2009) Diversity of fungi associated with mangrove legume Sesbania bispinosa (Jacq.) W. Wight (Fabaceae). Livest Res Rural Dev 21(5):1–15

  • Arpan D, Tanmay P, Suman KH, Arijit J, Chiranjit M, Pradeep KDM, Bikas RP, Keshab CM (2013) Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran–rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp. Bioresour Technol 128:290–296

    Article  Google Scholar 

  • Bahrin EK, Ibrahim MF, AbdRazak MN, Abd-Aziz S, Shah UK, Alitheen N, Salleh MM (2012) Improved cellulase production by Botryosphaeria rhodina from OPEFB at low level moisture condition through statistical optimization. Prep Biochem Biotechnol 42:155–170

    Article  PubMed  CAS  Google Scholar 

  • Bai S, Kumar MR, Kumar DJM, Balashanmugam P, Kumaran MDB, Kalaichelvan PT (2012) Cellulase production by Bacillus subtilis isolated from cow dung. Arch Appl Sci Res 4:269–279

    CAS  Google Scholar 

  • Bailey MJ, Nevalainen KM (1981) Induction, isolation and testing of stable Trichoderma ressei mutants with improved production of solubilizing cellulose. Enzym Microbiol Technol 3:153–157

    Article  CAS  Google Scholar 

  • Bailey MJ, Tahtiharju J (2003) Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl Microbiol Biotechnol 62:156–162

    Article  PubMed  CAS  Google Scholar 

  • Bara MTF, Lima AL, Ulhoa CJ (2003) Purification and characterization of an exo-β-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol Lett 219:81–85

    Article  PubMed  CAS  Google Scholar 

  • Bradner JR, Gillings M, Nevalainen KMH (1999) Qualitative assessment of hydrolytic activities in antarctic microfungi grown at different temperatures on solid media. World J Microbiol Biotechnol 15:131–132

    Article  Google Scholar 

  • Chand P, Aruna A, Maqsood AM, Rao LV (2004) Novel mutation method for increased cellulase production. J Appl Microbiol 98:318–323

    Article  Google Scholar 

  • Das M, Banerjee R, Bal S (2008) Multivariable parameter optimization for the endoglucanase production by Trichoderma reesei Rut C30 from Ocimum gratissimum seed. Braz Arch Biol Technol 51:35–41

    Article  CAS  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues: opportunities and perspectives. Int J Biol Sci 5:578–595

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dedavid ESLA, Lopes FC, Silveira ST, Brandelli A (2008) Production of cellulolytic enzymes by Aspergillus phoenicis in grape waste using response surface methodology. Appl Biochem Biotechnol. doi:10.1007/s12010-008-8190-7

    Google Scholar 

  • Dekker M (2003) In: Arora DK (ed) Handbook of fungal biotechnology. Marcel Dekker, Inc., New York

    Google Scholar 

  • Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072

    Article  PubMed  CAS  Google Scholar 

  • Devendra PM, Dhananjay S, Durgesh P, Jitendra PM (2012) Optimization of solid state fermentation conditions for the production by Trichoderma reesei. J Environ Biol 33:5–8

    Google Scholar 

  • Dhawan S, Lal R, Kuhad RC (2003) Ethidium bromide stimulated hyper laccase production from bird’s nest fungus Cyathusbulleri. Lett Appl Microbiol 36:64–67

    Article  PubMed  CAS  Google Scholar 

  • Dillon AJP, Bettio M, Pozzan FG, Andrighetti T, Camassola M (2011) A new Penicillium echinulatum strain with faster cellulase secretion obtained using hydrogen peroxide mutagenesis and screening with 2 deoxyglucose. J Appl Microbiol 111:48–53

    Article  PubMed  CAS  Google Scholar 

  • Durand H, Baron M, Calmels T, Tiraby G (1988) Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains. In: Aubert JP, Beguin P, Millet J (eds) Biochemistry and genetics of cellulose degradation. Academic Press, New York, pp 135–151

    Google Scholar 

  • El-Bondkly AM (2012) Molecular identification using ITS sequences and genome Shuffling to improve 2-Deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRC-F5. Appl Biochem Biotechnol 167:2160–2173

    Article  PubMed  CAS  Google Scholar 

  • El-Bondkly AM, Aboshosha AAM, Radwan NH, Dora SA (2010) Successive construction of β-glucosidase hyperproducers of Trichoderma harzianum using microbial biotechnology techniques. J Microb Biochem Technol 2:70–73

    Article  CAS  Google Scholar 

  • El-Ghonemy DHI, Ali TH, Moharam ME (2014) Optimization of culture conditions for the production of extracellular cellulases via solid state fermentation. Br Microbiol Res J 4:698–714

    Article  CAS  Google Scholar 

  • Elshafei AM, Hassan MM, Morsi NM, El-Ghonemy DH (2009a) Screening studies on the Formation of β-glucosidase from some Filamentous Fungi. Adv Food Sci 31:158–163

    CAS  Google Scholar 

  • Elshafei AM, Hassan MM, Morsi NM, El-Ghonemy DH (2009b) Optimization of culture condition for β-glucosidase production by Aspergillus terreus NRRL 265. Bull Fac Sci Cairo Univ 77:63–106

    Google Scholar 

  • Elshafei AM, Hassan MM, Morsi NM, El-Ghonemy DH (2011) Purification and some kinetic properties of β-glucosidase from Aspergillus terreus NRRL 265. Afr J Biotechnol 10:19556–19569

    CAS  Google Scholar 

  • Fawzi EM, Hamdy HS (2011) Improvement of carboxymethyl cellulase production from Chaetomium cellulolyticum NRRL 18756 by mutation and optimization of solid state fermentation. Bangladesh J Bot 40(2):139–147

    Google Scholar 

  • Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99:7623–7629

    Article  PubMed  CAS  Google Scholar 

  • Garg SK, Neelakantan S (1981) Effect of cultural factors on cellulase activity and protein production by Aspergillus terreus. Biotechnol Bioeng 23:1653–1659

    Article  CAS  Google Scholar 

  • Gomori G (1955) Preparations of buffers for the use in enzyme studies. Methods Enzymol 1:138–146

    Article  CAS  Google Scholar 

  • Gonzalez VG, Favela-Torres E, Aguilar CN, Romero-Gomez S, Diaz-Godinez G, Augar C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167

    Article  Google Scholar 

  • Graminha EBN, Gonçalves AZL, Pirota RDPB, Balsalobre MAA, Da Silva R, Gomes E (2008) Enzyme production by solid-state fermentation: application to animal nutrition. Anim Feed Sci Technol 144:1–22

    Article  CAS  Google Scholar 

  • Hao XC, Yu XB, Yan ZL (2006) Optimization of the medium for the production of cellulase by the mutant Trichoderma reesei WX-112 using response surface methodology. Food Technol Biotechnol 44:89–94

    CAS  Google Scholar 

  • Ikram-ul-Haq S, Khurshid S, Ali H, Ashraf MA, Rajoka MI (2001) Mutation of Aspergillus niger for hyper production of citric acid from black strap molasses. World J Microbiol Biol 17:35–37

    Article  CAS  Google Scholar 

  • Immanuel G, Dhanusa R, Prema P, Palavesam A (2006) Effect of different growth parameters on endo-glucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int J Environ Sci Technol 3:25–34

    Article  CAS  Google Scholar 

  • Jatinder K, Bhupinder SC, Badhan AK, Ghatora SK, Harvinder SS (2007) Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electron J Biotechnol 10:261–270

    Google Scholar 

  • Jeya M, Joo A, Lee KM, Sim WI, Oh DK, Kim YS, Kim IW, Lee JK (2010) Characterization of endo-β-1,4-glucanase from 1 novel strain of Penicillium pinophilum KMJ601. Appl Microbiol Biotechnol 85:1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris BJ (2003) Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol 86:207–312

    Article  PubMed  CAS  Google Scholar 

  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156

    Article  PubMed  CAS  Google Scholar 

  • Karlsson J, Momcilovic D, Wittgren B, Schulein M, Tjerneld F, Brinkmalm G (2002) Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei. Biopolymers 63:32–40

    Article  PubMed  CAS  Google Scholar 

  • Kawamori M, Morikawa Y, Takasawa S (1985) Inductive formation of cellulases by l-sorbose in Trichoderma reesei. Appl Microbiol Biotechnol 22:235–236

    CAS  Google Scholar 

  • Kenney JF, Keeping ES (1962) “The Standard Deviation” and “Calculation of the Standard Deviation” §6.5–6.6. In: Mathematics of statistics, Pt. 1, 3rd edn. Van Nostrand, Princeton, pp 77–80

  • Kim DM, Cho EJ, Kim JW, Lee YW, Chung HJ (2014) Production of cellulases by Penicillium sp. in a solid-state fermentation of oil palm empty fruit bunch. Afr J Biotechnol 13:145–155

    Article  CAS  Google Scholar 

  • Kirchner OG, Granados MS, Pascual PR (2005) Effect of media composition and growth conditions on production of β-glucosidase by Aspergillus niger C-6. Appl Biochem Biotechnol 121:347–359

    Article  Google Scholar 

  • Kotaka A, Bando H, Kaya M, KatoMurai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M (2008) Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105:622–627

    Article  PubMed  CAS  Google Scholar 

  • Krishna C (1999) Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol 69:231–239

    Article  CAS  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies to improve cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:19–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YT, Luo ZY, Long CN, Wang HD, Long MN, Hu Z (2011) Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran. N Biotechnol 28:733–737

    Article  PubMed  CAS  Google Scholar 

  • Lonsane BK, Krishnaiah MM (1991) Leaching of the product and further downstream processing. In: Doelle HW, Mitchell DA, Rolz CE (eds) Solid substrate cultivation. Elsevier Science Publishers, Essex, pp 147–171

    Google Scholar 

  • Lonsane BK, Ghidyal NP, Budiatman S, Ramakrishna SV (1985) Engineering aspects of solid state fermentation. Enzym Microbiol Technol 7:258–265

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lynd LR, Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  PubMed  CAS  Google Scholar 

  • Mandel M, Weber J (1969) Exoglucanase activity by microorganisms. Adv Chem 95:391–414

    Article  Google Scholar 

  • Mishra S, Gopalkrishnan KS (1984) New method for isolation of cellulase constitutive mutants in Trichoderma reesei and partial characterization. J Ferment Technol 62:495–500

    CAS  Google Scholar 

  • Nevalainen KMH, Palva ET, Bailey MJ (1980) A high cellulase producing mutant strain of Trichoderma reesei. Enzym Microb Technol 2:59–60

    Article  CAS  Google Scholar 

  • Nicoletta C, Mario A, Brunella P, Antonio R, Enrico S, Augusto R (2002) Complete and efficient enzymatic hydrolysis of pretreated wheat straw. Process Biochem 37:937–941

    Article  Google Scholar 

  • Niranjane AP, Madhou P, Stevenson TW (2007) The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantea. Enzym Microbiol Technol 40:1464–1468

    Article  CAS  Google Scholar 

  • Ögel ZB, Yarangümeli K, Dündar H, Ifrij I (2001) Submerged cultivation of Scytalidium thermophilum on complex lingo-cellulosic biomass for endo-glucanase production. Enzym Microbiol Technol 28(7–8):689–695

    Article  Google Scholar 

  • Ong LG, Abd-Aziz S, Noraini S, Karim MI, Hassan MA (2004) Enzyme production and profile by Aspergillus niger during solid state fermentation using palm kernel cake as substrate. Appl Biochem Biotechnol 118:73–79

    Article  PubMed  CAS  Google Scholar 

  • Pathak H, Singh R, Bhatia A, Jain N (2006) Recycling of rice straw to improve wheat yield and soil fertility and reduce atmospheric pollution. Paddy Water Environ 4:111–117

    Article  Google Scholar 

  • Peciulyte D (2007) Isolation of cellulolytic fungi from waste paper gradual recycling materials. EKOLOGIJA 53:11–18

    Google Scholar 

  • Pradeep MR, Narasimha G (2011) Utilization of pea seed husk as a substrate for cellulase production by mutant Aspergillus niger. Insight Biotechnol 1(2):17–22

    Article  Google Scholar 

  • Pradeep MR, Janardhan A, Kumar AP, Narasimha G (2012) Induction of chemical mutations in Aspergillus niger to enhance cellulase production. J Environ Biol 2:129–132

    Google Scholar 

  • Pushalkar S, Rao KK, Menon K (1995) Production of β-glucosidase by Aspergillus terreus. Curr Microbiol 30:255–258

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez IA, Escobedo CP, Paramo MGZ, Romero EL, Camacho HC (2005) Degradation of cellulose by the bean-pathogenic fungus Colletotrichum lindemuthianum. Agric técn Méx 32:101–114

    Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235–258

    Article  Google Scholar 

  • Saha S, Roy R, Sen SK, Ray AK (2006) Characterization of cellulase producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquac Res 37:380–388

    Article  CAS  Google Scholar 

  • Sakthivel M, Karthikeyan N, Jayaveny R, Palani P (2010) Optimization of culture conditions for the production of extracellular cellulase from Corynebacterium lipophiloflavum. J Ecobiotechnol 2:06–13

    Google Scholar 

  • Shafique S, Rukhsana B, Sobiya S (2011) Strain improvement in Trichoderma viride through mutation for over expression of cellulase and characterization of mutants using random amplified polymorphic DNA (RAPD). Afr J Biotechnol 10:19590–19597

    CAS  Google Scholar 

  • Shaikh NM, Patel AA, Mehta SA, Patel ND (2013) Isolation and screening of cellulolytic bacteria inhabiting different environment and optimization of cellulase production. Univ J Environ Res Technol 3:39–49

    CAS  Google Scholar 

  • Shamala TR, Sreekantiah KR (1985) Production of cellulases and d-xylanase by some selected fungal isolates. Enzym Microbiol Technol 8:178–182

    Article  Google Scholar 

  • Shankar T, Isaiarasu L (2011) Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle East J Sci Res 8:40–45

    CAS  Google Scholar 

  • Shanmugapriya K, Saravana P, Krishnapriya S, Manoharan M, Mythili A, Joseph S (2012) Isolation, screening and partial purification of cellulase from cellulase producing bacteria. Int J Adv Biotechnol Res 3:509–514

    CAS  Google Scholar 

  • Sing S, Brar JK, Sandhu DK, Kaur A (1996) Isozyme polymorphism of cellulases in Aspergillus terreus. J Basic Microbiol 36:289–296

    Article  Google Scholar 

  • Singhania RR, Sukumaran RK, Pillai A, Szakacs G, Pandey A (2006) Solid-state fermentation of lignocellulosic substrates for cellulase production by Trichoderma reesei NRRL 11460. Indian J Biotechnol 5:332–336

    CAS  Google Scholar 

  • Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18

    Article  CAS  Google Scholar 

  • Singhvi MS, Adsul MG, Gokhale DV (2011) Comparative production of cellulase by mutant of Penicillium janthinellum NCIM 1171 and its application in hydrolysis of Avicel and cellulose. Bioresour Technol 102:6569–6572

    Article  PubMed  CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1996) Cloning, sequencing, and expression of the cellulase genes of Humicola grisea var. thermoidea. J Biotechnol 50:137–147

    Article  PubMed  CAS  Google Scholar 

  • Villena GK, Gutierrez-Correa M (2006) Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Lett Appl Microbiol 43:226–262

    Article  Google Scholar 

  • Vu VH, Pham TA, Kim K (2009) Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. Mycobiology 37:267–271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vu VH, Pham TA, Kim K (2010) Improvement of a fungal strain by repeated and sequential mutagenesis and optimization of solid-state fermentation for the hyper-production of raw starch-digesting enzyme. J Microbiol Biotechnol 20:718–726

    Article  PubMed  CAS  Google Scholar 

  • Vu VH, Pham TA, Kim K (2011) Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology 39:20–25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xiong H, von Weymarn N, Leisola M, Turunen O (2004) Influence of pH on the production of xylanases by Trichoderma reesei Rut C-30. Process Biochem 39(6):731–736

    Article  Google Scholar 

  • Yun SI, Jeono CS, Chung DK, Choi HS (2001) Purification and some properties of a β-glucosidase from Trichoderma harzianum Type C-4. Biosci Biotechnol Biochem 65:2028–2032

    Article  PubMed  CAS  Google Scholar 

  • Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Zhou J, Wang YH, Chu J, Zhuang YP, Zhang SL, Yin P (2008) Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresour Technol 99:6826–6833

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Helmy El-Ghonemy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ghonemy, D.H., Ali, T.H., El-Bondkly, A.M. et al. Improvement of Aspergillus oryzae NRRL 3484 by mutagenesis and optimization of culture conditions in solid-state fermentation for the hyper-production of extracellular cellulase. Antonie van Leeuwenhoek 106, 853–864 (2014). https://doi.org/10.1007/s10482-014-0255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0255-8

Keywords

Navigation