Skip to main content
Log in

Microbial systematics in the post-genomics era

  • Perspective
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Microbial systematics and phylogeny should form the foundation and guiding light for a comprehensive understanding of different aspects of microbiology. However, there are many critical issues in microbial systematics that are currently not resolved. Some of these include: how to define and delimit a prokaryotic species; development of rationale criteria for the assignment of higher taxonomic ranks; understanding what unique properties distinguish species from different groups; and understanding the branching order and interrelationship among higher prokaryotic clades. The sequencing of genomes from large numbers of cultured as well as uncultured microbes covering prokaryotic diversity provides unique means to achieve these important objectives. Prokaryotic genomes are found to be very diverse and dynamic and horizontal gene transfers (HGTs) are indicated to have played important role in species/genome evolution. Although HGT adds a layer of complexity in terms of understanding the genomes and species evolution, it is contended that vast majority of genes and genetic characteristics that are distinctive characteristics of higher prokaryotic taxa are vertically inherited and based on them a solid foundation for microbial systematics can be developed. We describe two kinds of molecular markers consisting of conserved indels in protein sequences and whole proteins that are specific for different groups that are proving particularly valuable in defining different prokaryotic groups in clear molecular terms and in understanding their interrelationships. The genetic and biochemical studies on these taxa-specific molecular markers also open the way to discover novel biochemical and physiological characteristics that are unique properties of these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abby S, Daubin V (2007) Comparative genomics and the evolution of prokaryotes. Trends Microbiol 15:135–141

    Article  PubMed  CAS  Google Scholar 

  • Ahmod NZ, Gupta RS, Shah HN (2011) Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group. J Microbiol Methods (in press)

  • Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L, Olmedo G (2010) Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 11:332

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Aris-Brosou S (2005) Determinants of adaptive evolution at the molecular level: the extended complexity hypothesis. Mol Biol Evol 22:200–209

    Article  PubMed  CAS  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin JJ, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  PubMed  CAS  Google Scholar 

  • Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci USA 102:14332–14337

    Article  PubMed  CAS  Google Scholar 

  • Belda E, Moya A, Silva FJ (2005) Genome rearrangement distances and gene order phylogeny in gamma-proteobacteria. Mol Biol Evol 22:1456–1467

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ, Staley JT, Krieg NR (2005) Classification of prokaryotic organisms and the concept of bacterial speciation. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin, pp 27–32

    Chapter  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  PubMed  CAS  Google Scholar 

  • Coleman ML, Chisholm SW (2010) Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci USA 107:18634–18639

    Article  PubMed  CAS  Google Scholar 

  • Daubin V, Ochman H (2004) Bacterial genomes as new gene homes: the genealogy of ORFans in E.coli. Genome Res 14:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Delong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50:470–478

    Article  PubMed  CAS  Google Scholar 

  • Delong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    Article  PubMed  CAS  Google Scholar 

  • Ding GH, Yu ZH, Zhao J, Wang Z, Li Y, Xing XB, Wang CA, Liu L, Li YX (2008) Tree of life based on genome context networks. PLoS One 3(10):e3357

    Article  PubMed  CAS  Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li LL, McDaniel L, Moran MA, Nelson KE, Nilsson C, Olson R, Paul J, Brito BR, Ruan YJ, Swan BK, Stevens R, Valentine DL, Thurber RV, Wegley L, White BA, Rohwer F (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–639

    Article  PubMed  CAS  Google Scholar 

  • Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Hotopp JCD, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V (2010) Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 11(10):R107

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128

    Article  PubMed  CAS  Google Scholar 

  • Dutilh BE, Snel B, Ettema TJG, Huynen MA (2008) Signature genes as a phylogenomic tool. Mol Biol Evol 25:1659–1667

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, Mckenney K, Sutton G, Fitzhugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu LI, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, Mcdonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  PubMed  CAS  Google Scholar 

  • Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746

    Article  PubMed  CAS  Google Scholar 

  • Fraser-Liggett CM (2005) Insights on biology and evolution from microbial genome sequencing. Genome Res 15:1603–1610

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristic of the phylum actinobacteria. Int J Syst Evol Microbiol 55:2401–2412

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Gupta RS (2007) Phylogenomic analysis of proteins that are distinctive of archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 8:86

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Paramanathan R, Gupta RS (2006) Signature proteins that are distinctive characteristics of actinobacteria and their subgroups. Antonie Van Leeuwenhoek 90:69–91

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Mohan R, Gupta RS (2009) Phylogenomics and protein signatures elucidating the evolutionary relationships among the gamma-proteobacteria. Int J Syst Evol Microbiol 59:234–247

    Article  PubMed  CAS  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) The revised road map to the manual. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin, pp 159–187

    Chapter  Google Scholar 

  • Gershon D (1997) Bioinformatics in a post-genomics age. Nature 389:417–418

    Article  PubMed  CAS  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  PubMed  CAS  Google Scholar 

  • Gianoulis TA, Raes J, Patel PV, Bjornson R, Korbel JO, Letunic I, Yamada T, Paccanaro A, Jensen LJ, Snyder M, Bork P, Gerstein MB (2009) Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad Sci USA 106:1374–1379

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    PubMed  CAS  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  PubMed  CAS  Google Scholar 

  • Griffiths E, Gupta RS (2001) The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that fibrobacter diverged at a similar time to Chlamydia and the Cytophaga-Flavobacterium-Bacteroides division. Microbiology-Sgm 147:2611–2622

    CAS  Google Scholar 

  • Griffiths E, Gupta RS (2004a) Distinctive protein signatures provide molecular markers and evidence for the monophyletic nature of the Deinococcus-Thermus phylum. J Bacteriol 186:3097–3107

    Article  PubMed  CAS  Google Scholar 

  • Griffiths E, Gupta RS (2004b) Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales. Int Microbiol 7:41–52

    PubMed  CAS  Google Scholar 

  • Griffiths E, Gupta RS (2006) Molecular signatures in protein sequences that are characteristics of the phylum Aquificae. Int J Syst Evol Microbiol 56:99–107

    Article  PubMed  CAS  Google Scholar 

  • Griffiths E, Gupta RS (2007) Identification of signature proteins that are distinctive of the Deinococcus-Thermus phylum. Int Microbiol 10:201–208

    PubMed  CAS  Google Scholar 

  • Griffiths E, Petrich AK, Gupta RS (2005) Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification. Microbiology-Sgm 151:2647–2657

    Article  CAS  Google Scholar 

  • Griffiths E, Ventresca MS, Gupta RS (2006) BLAST screening of Chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species. BMC Genomics 7:14

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    PubMed  CAS  Google Scholar 

  • Gupta RS (2000a) The natural evolutionary relationships among prokaryotes. Crit Rev Microbiol 26:111–131

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2000b) The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4:187–202

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2003) Evolutionary relationships among photosynthetic bacteria. Photosynth Res 76:173–183

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2004) The phylogeny and signature sequences characteristics of fibrobacteres, chlorobi, and bacteroidetes. Crit Rev Microbiol 30:123–143

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2005) Protein signatures distinctive of alpha-proteobacteria and its subgroups and a model for alpha-proteobacterial evolution. Crit Rev Microbiol 31:101–135

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2006) Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon-proteobacteria (Campylobacterales). BMC Genomics 7:167

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59 1:2510–2526

    Article  CAS  Google Scholar 

  • Gupta RS (2010) Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups. Photosynth Res 104:357–372

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2011) Origin of diderm (gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100:171–182

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Bhandari V (2011) Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups. Antonie Van Leeuwenhoek 100:1–34

    Article  PubMed  Google Scholar 

  • Gupta RS, Gao B (2009) Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I). Int J Syst Evol Microbiol 59:285–294

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Gao B (2010) Recent advances in understanding microbial systematics. In: Xu JP (ed) Microbial population genetics. Caister Academic Press, Norfolk

    Google Scholar 

  • Gupta RS, Griffiths E (2002) Critical issues in bacterial phylogeny. Theor Popul Biol 61:423–434

    Article  PubMed  Google Scholar 

  • Gupta RS, Griffiths E (2006) Chlamydiae-specific proteins and indels: novel tools for studies. Trends Microbiol 14:527–535

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Lorenzini E (2007) Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the bacteroidetes and chlorobi species. BMC Evol Biol 7:71

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Mathews DW (2010) Signature proteins for the major clades of cyanobacteria. BMC Evol Biol 10:24

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Mok A (2007) Phylogenomics and signature proteins for the alpha-proteobacteria and its main groups. BMC Microbiol 7:106

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Shami A (2011) Molecular signatures for the crenarchaeota and the thaumarchaeota. Antonie Van Leeuwenhoek 99:133–157

    Article  PubMed  Google Scholar 

  • Gupta RS, Sneath PHA (2007) Application of the character compatibility approach to generalized molecular sequence data: branching order of the proteobacterial subdivisions. J Mol Evol 64:90–100

    Article  PubMed  CAS  Google Scholar 

  • Horiike T, Miyata D, Hamada K, Saruhashi S, Shinozawa T, Kumar S, Chakraborty R, Komiyama T, Tateno Y (2009) Phylogenetic construction of 17 bacterial phyla by new method and carefully selected orthologs. Gene 429:59–64

    Article  PubMed  CAS  Google Scholar 

  • Kainth P, Gupta RS (2005) Signature proteins that are distinctive of alpha-proteobacteria. BMC Genomics 6:94

    Article  PubMed  CAS  Google Scholar 

  • Kersters K, Devos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006) Introduction to the proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, 3rd edition, Release 3.12 edn. Springer, New York, pp 3–37

    Google Scholar 

  • Klenk HP, Goker M (2010) En route to a genome-based classification of archaea and bacteria? Syst Appl Microbiol 33:175–182

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361:1929–1940

    Article  PubMed  Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2009) Darwinian evolution in the light of genomics. Nucleic Acids Res 37:1011–1034

    Article  PubMed  CAS  Google Scholar 

  • Koski LB, Morton RA, Golding GB (2001) Codon bias and base composition are poor indicators of horizontally transferred genes. Mol Biol Evol 18:404–412

    PubMed  CAS  Google Scholar 

  • Kunin V, Ouzounis CA (2003) The balance of driving forces during genome evolution in prokaryotes. Genome Res 13:1589–1594

    Article  PubMed  CAS  Google Scholar 

  • Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005) The net of life: reconstructing the microbial phylogenetic network. Genome Res 15:954–959

    Article  PubMed  CAS  Google Scholar 

  • Kuo CH, Ochman H (2009) The fate of new bacterial genes. FEMS Microbiol Rev 33:38–43

    Article  PubMed  CAS  Google Scholar 

  • Lake JA, Herbold CW, Rivera MC, Servin JA, Skophammer RG (2007) Rooting the tree of life using non-ubiquitous genes. Mol Biol Evol 24:130–136

    Article  PubMed  CAS  Google Scholar 

  • Lathe WC, Snel B, Bork P (2000) Gene context conservation of a higher order than operons. Trends Biochem Sci 25:474–479

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Hendrickson H (2005) Genome evolution in bacteria: order beneath chaos. Curr Opin Microbiol 8:572–578

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397

    Article  PubMed  CAS  Google Scholar 

  • Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3:807–814

    Article  CAS  Google Scholar 

  • Liu SL, Schryvers AB, Sanderson KE, Johnston RN (1999) Bacterial phylogenetic clusters revealed by genome structure. J Bacteriol 181:6747–6755

    PubMed  CAS  Google Scholar 

  • Ludwig W, Klenk HP (2005) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, Berlin, pp 49–65

    Chapter  Google Scholar 

  • Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60:708–720

    Article  PubMed  CAS  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucleic Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  • Marri PR, Golding GB (2008) Gene amelioration demonstrated: the journey of nascent genes in bacteria. Genome 51:164–168

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36:760–766

    Article  PubMed  CAS  Google Scholar 

  • Narra HP, Cordes MHJ, Ochman H (2008) Structural features and the persistence of acquired proteins. Proteomics 8:4772–4781

    Article  PubMed  CAS  Google Scholar 

  • Naushad HS, Gupta RS (2011) Molecular signatures (conserved indels) in protein sequences that are specific for the order Pasteurellales and distinguish two of its main clades. Antonie Van Leeuwenhoek Epub ahead of print:

  • NCBI database (2011) NCBI completed microbial genomes. http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/micr.html. Ref Type: Generic

  • Novichkov PS, Omelchenko MV, Gelfand MS, Mironov AA, Wolf YI, Koonin EV (2004) Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. J Bacteriol 186:6575–6585

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2010) Microbial systematics. In: Wang LK, Ivanov V, Jay JH (eds) Environmental biotechnology—handbook of environmental engineering. Springer, New York, pp 81–120

    Google Scholar 

  • Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature 449:835–842

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Delsuc F, Brinkmann H, Lartillot N (2005) Phylogenomics. Annu Rev Ecol Syst 36:541–562

    Article  Google Scholar 

  • Ragan MA (2001) Detection of lateral gene transfer among microbial genomes. Curr Opin Genet Dev 11:620–626

    Article  PubMed  CAS  Google Scholar 

  • Ragan MA, Beiko RG (2009) Lateral genetic transfer: open issues. Philos Trans R Soc Lond B Biol Sci 364:2241–2251

    Article  PubMed  CAS  Google Scholar 

  • Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    Article  PubMed  Google Scholar 

  • Singh B, Gupta RS (2009) Conserved inserts in Hsp60 (GroEL) and Hsp70 (DnaK) are essential for cellular growth. Mol Genet Genomics 281:361–373

    Google Scholar 

  • Snel B, Bork P, Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21:108–110

    Article  PubMed  CAS  Google Scholar 

  • Snel B, Huynen MA, Dutilh BE (2005) Genome trees and the nature of genome evolution. Annu Rev Microbiol 59:191–209

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E (2006) Defining taxonomic ranks. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 29–57

    Chapter  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kampfer P, Maiden MCJ, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Staley JT (2006) The bacterial species dilemma and the genomic-phylogenetic species concept. Philos Trans R Soc Lond B Biol Sci 361:1899–1909

    Article  PubMed  Google Scholar 

  • Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:464–470

    Article  PubMed  CAS  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Ros IMY, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou LW, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJB, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955

    Article  PubMed  CAS  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    Article  PubMed  CAS  Google Scholar 

  • Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, El Karoui M, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguenec C, Lescat M, Mangenot S, Martinez-Jehanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Saint Ruf C, Schneider D, Tourret J, Vacherie B, Vallenet D, Medigue C, Rocha EPC, Denamur E (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5(1):e1000344

    Article  PubMed  CAS  Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Gordon JI (2008) An invitation to the marriage of metagenomics and metabolomics. Cell 134:708–713

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the sargasso sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • Wayne LG (1988) International committee on systematic bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Syst Appl Microbiol 10:99–100

    Google Scholar 

  • Williams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM, Dickerman AW (2010) Phylogeny of gammaproteobacteria. J Bacteriol 192:2305–2314

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (2006) How we do, don’t and should look at bacteria and bacteriology. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes. Springer, New York, pp 3–23

    Chapter  Google Scholar 

  • Wu DY, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny—driven genomic encyclopedia of bacteria and archaea. Nature 462:1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Wang FP, Guo L, Chen ZL, Sievert SM, Meng J, Huang GR, Li YX, Yan QY, Wu S, Wang X, Chen SW, He GY, Xiao X, Xu AL (2011) Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. ISME J 5:414–426

    Article  PubMed  Google Scholar 

  • Xu JP (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713–1731

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, B., Gupta, R.S. Microbial systematics in the post-genomics era. Antonie van Leeuwenhoek 101, 45–54 (2012). https://doi.org/10.1007/s10482-011-9663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9663-1

Keywords

Navigation