Skip to main content
Log in

Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth)

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel actinobacterium, designated CB31T, was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l−1) and MgCl2·6H2O (3 g l−1). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was ll-diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H4) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45°C, with an optimum between 35 and 40°C. The pH range for growth was 5.7–9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95–96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31T is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31T (=NCIMB 14440T = DSM 21240T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Barrow GI, Feltham RKA (1993) Cowan and Steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Batzke A, Engelen B, Sass H, Cypionka H (2007) Phylogentic and physiological diversity of cultured deep-biosphere bacteria from equatorial pacific ocean and Peru margin sediments. Geomicrobiol J 24:261–273

    Article  CAS  Google Scholar 

  • Blakwill DL, Reeves RH, Drake GR, Reeves JY, Crocker FH, King MB, Boone DR (1997) Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol Rev 20:201–216

    Article  Google Scholar 

  • Brown MG, Blakwill DL (2009) Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microb Ecol 57:484–493

    Article  CAS  PubMed  Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Chivian D, Brodie EL, Alm EJ, Cullry DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hanzen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322:275–278

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  • Cockell C, Voytek M, Gronstal A, Kirshtein J, Cohn G, Powars DS, Sanford W, Horton W (2009) Microbiology of the Chesapeake Eyreville core: microbial enumerations and the relationship to impact processes. The Geological Society of America Special Paper volume on the Deep Drilling Project at Eyreville, VA (in press)

  • Crocker FH, Fredrickson JK, White DC, Ringelberg DB, Balkwill DL (2000) Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Microbiology 146:1295–1310

    CAS  PubMed  Google Scholar 

  • D’Hondt S, Jorgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang GZ, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guerin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    Article  PubMed  CAS  Google Scholar 

  • Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33:496–499

    Article  CAS  PubMed  Google Scholar 

  • Finster KW, Herbert RA, Kjeldsen KU, Schumann P, Lomstein BA (2009) Demequina lutea sp. nov. isolated from a high Arctic permafrost soil. Int J Syst Evol Microbiol 59:649–653

    Article  CAS  PubMed  Google Scholar 

  • Fry JC, Horsfield B, Sykes R, Cragg BA, Heywood C, Kim GT, Mangelsdorf K, Mildenhall DC, Rinna J, Vieth A, Zink K-G, Sass H, Weightman AJ, Parkes RJ (2009) Prokaryptic populations and activities in an interbedded coal deposite, including a previously deeply buried section (1.6–2.3 km) above ≅150 Ma basement rock. Geomicrobiol J 26:163–178

    Article  CAS  Google Scholar 

  • Gérard E, Moreira D, Philippot P, Van Kranendonk MJ, López-García P (2009) Modern subsurface bacteria in pristine 2.7 Ga-old fossil stromatolite drillcore samples from the Fortescue Group, Western Australia. PLoS ONE 4:e5298

    Article  PubMed  CAS  Google Scholar 

  • Gohn GS, Koeberl C, Miller KG, Reinold WU, The Scientific Staff of the Chesapeake Bay Impact Structure Drilling Project (2006) Chesapeake Bay impact structure deep drilling project completes coring. Sci Drill 3:34–37

    Google Scholar 

  • Gohn GS, Koeberl C, Miller KG, Reimold WU, Browning JV, Cockell CS, Horton JW Jr, Kenkmann T, Kulpecz AA, Powars DS, Sanford WE, Voytek MA (2008) Deep drilling into the Chesapeake Bay impact structure. Science 320:1740–1745

    Article  CAS  PubMed  Google Scholar 

  • Gronstal AL, Voytek MA, Kirshtein JD, von der Heyde NM, Lowit MD, Cockell CS (2009) Contamination assessment in microbiological sampling of the Eyreville core, in the Chesapeake Bay impact structure. The Geological Society of America Special Paper volume on the Deep Drilling Project at Eyreville, VA (in press)

  • Groth I, Schumann P, Weiss N, Martin K, Rainey FA (1996) Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239

    CAS  PubMed  Google Scholar 

  • Hansen AA, Herbert RA, Mikkelsen K, Jensen LL, Kristoffersen T, Tiedje JM, Lomstein BA, Finster KW (2007) Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Northern Norway. Environ Microbiol 11:2870–2884

    Article  CAS  Google Scholar 

  • Horton JW, Powars DS, Gohn GS (2005) Studies of the Chesapeake Bay impact structure–Introduction and discussion. In: Horton JW, Powars DS, Gohn GS (eds) Studies of the Chesapeake Bay impact structure—The USGS-Langley Corehole, Hampton, Virginia and related coreholes and geological surveys, 1st edn. US Geological Survey, Reston, pp A1–A24

    Google Scholar 

  • Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert MTP, Zuber MT, Bunce M, Rønn R, Gilichinsky D, Froese D, Willerslev E (2007) Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci USA 104:14401–14405

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen BB, Boetius A (2007) Feast and famine—microbial life in the deep-sea bed. Nature Rev 5:770–781

    Article  CAS  Google Scholar 

  • Kämpfer P, Lodders N, Warfolomeow I, Busse H-J (2009) Description of Tessaracoccus lubricantis sp. nov., isolated from a metalworking fluid. Int J Syst Evol Microbiol 59:1545–1549

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Lee SD (2008) Terracoccus flavescens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 58:785–789

    Article  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier V, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

  • MacKenzie SL (1987) Gas chromatographic analysis of amino acids as the N-heptafluorobuyryl esters. J Assoc Off Anal Chem 70:151–160

    CAS  PubMed  Google Scholar 

  • Maszensan AM, Seviour RJ, Patel BKC, Schumann P, Rees GN (1999) Tessaracoccus bendigoensis gen. nov., sp. nov., a Gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 49:459–468

    Article  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    CAS  Google Scholar 

  • Morita RY, ZoBell CE (1955) Occurnce of bacteria in pelagic sediments collected during the Mid-Pacific expedition. Deep Sea Res 3:66–73

    Article  CAS  Google Scholar 

  • Onstott TC, Moser DP, Pfiffner SM, Fredrickson JK, Brockman FJ, Phelps TJ, White DC, Peacock A, Balkwill D, Hoover R, Krumholz LR, Borscik M, Kieft TL, Wilson R (2003) Indigenous and contaminant microbes in ultradeep mines. Environ Microbiol 5:1168–1191

    Article  CAS  PubMed  Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman H, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413

    Article  Google Scholar 

  • Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:299–314

    Article  Google Scholar 

  • Poag CW (1997) The Chesapeake Bay bolide impact; a convulsive event in Atlantic Coastal Plain evolution. Sediment Geol 108:45–90

    Article  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) Silva a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acid Res 35:7188–7196

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  • Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Tempelton AS, Kieft TL, Smith RL, Sanford WE, Calaghan RL, Mitton JB, Spear JR (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl Environ Microbiol 74:143–152

    Article  CAS  PubMed  Google Scholar 

  • Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156

    Article  CAS  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  Google Scholar 

  • Schleifer KH, Seidl PH (1985) Chemical composition and structure of murein. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 201–219

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and the 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Stackebrandt E, Schaal KP (2006) The Family Propionibacteriaceae: the Genera Friedmanniella, Luteococcus, Microlunatus, Micropruina, Propioniferax, Propionimicrobium and Tessarococcus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 3, 3rd edn. Springer, New York, pp 383–399

    Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Teske AP (2005) The deep biosphere is alive and well. Trends Microbiol 13:402–404

    Article  CAS  PubMed  Google Scholar 

  • Thorsvik T, Furnes H, Muehlenbacks K, Thorseth IH, Tumyr O (1998) Evidence for microbial activity at the glass alteration interface in oceanic basalts. Earth Planet Sci Lett 162:165–176

    Article  Google Scholar 

  • White DC, Phelps TJ, Onstott TC (1998) What’s up down there? Curr Opin Microbiol 1:286

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tove Wiegers for expert technical assistance. We thank Prof. Rodney A. Herbert for critically reviewing the manuscript. We also acknowledge the critical comments of two anonymous reviewers that helped to improve the manuscript. Polar lipid analyses were carried out by the Identification Service of the DSMZ and Dr B. J. Tindall, DSMZ, Braunschweig, Germany. This study was supported by the Carlsberg Foundation, Grant No. 2005-1-275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. W. Finster.

Additional information

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of CB31T is FJ228690.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finster, K.W., Cockell, C.S., Voytek, M.A. et al. Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth). Antonie van Leeuwenhoek 96, 515–526 (2009). https://doi.org/10.1007/s10482-009-9367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9367-y

Keywords

Navigation