Skip to main content

Advertisement

Log in

Evolutionary multiobjective optimization for the multi-machine flow shop scheduling problem under blocking

  • Multiple Objective Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Recently, the flow shop scheduling problem under blocking has gained broad attention in academic fields. Various papers have been devoted to investigate this issue and have been mostly restricted to the treatment of single objective at a time. Nevertheless, in practice the scheduling decisions often involve simultaneous consideration of multiple objectives (usually contradicting) to give more realistic solutions to the decision maker. In this study, we deal with a bi-objective blocking permutation flow shop scheduling problem where the makespan and total completion time are considered as objective functions. Both measures lead to an NP-hard problem. Our interest is to propose for the first time a Genetic Algorithm based on NSGA-II for searching locally Pareto-optimal frontier for the problem under consideration. The individuals in the algorithm are represented as discrete job permutations. Some specific versions of the NEH heuristic are used to generate the initial population. Non-dominated solutions and differences among parents are taken advantage of when designing the selection operator. The efficiency of the proposed algorithm, based on various metrics, is compared against the multiobjective evolutionary algorithm SPEA-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armentano, V. A., & Ronconi, D. P. (2000). Minimizao do tempo total de atraso no problema de flowshop com buffer zero atravs de busca tabu. Gestao & Produao, 7(3), 352.

    Article  Google Scholar 

  • Asefi, H., Jolai, F., Rabiee, M., & Tayebi Araghi, M. E. (2014). A hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible flowshop scheduling problem. International Journal of Advanced Manufacturing Technology, 75, 1017–1033.

    Article  Google Scholar 

  • Caraffa, V., Ianes, S., Bagchi, T., & Sriskandarajah, C. (2001). Minimizing makespan in a flowshop using genetic algorithms. International Journal of Production Economics, 2, 101–15.

    Article  Google Scholar 

  • Collette, Y., & Siarry, P. (2003). Multi objective optimization: Principles and case studies. Berlin: Springer.

    Google Scholar 

  • Companys, R., & Mateo, M. (2007). Different behaviour of a double branch-and-bound algorithm on \(Fm|prmu|Cmax\) and \(Fm|block|Cmax\) problems. Computers and Operations Research, 34, 938–953.

    Article  Google Scholar 

  • Dario Landa Silva, J., Burke, Edmund K., & Petrovic, S. (2004). An introduction to multiobjective metaheuristics for scheduling and timetabling. Lecture Notes in Economics and Mathematical Systems, 535, 91–129.

    Article  Google Scholar 

  • Davendra, D., Bialic-Davendra, M., Senkerik, R., & Pluhacek, M. (2013). Scheduling the flow shop with blocking problem with the chaos-induced discrete self organising migrating algorithm. In Proceedings 27th European conference on modelling and simulation.

  • Deb, K. (2008). Introduction to evolutionary multiobjective optimization. In J. Branke, K Deb, K. Miettinen, R. Słowiński (Eds.), Multiobjective Optimization. Lecture Notes in Computer Science (vol. 5252). Berlin: Springer.

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Deng, G., Xu, Z., & Gu, X. (2012). A discrete artificial bee colony algorithm for minimizing the total flow time in the blocking flow shop scheduling. Chinese Journal of Chemical Engineering, 20, 1067–1073.

    Article  Google Scholar 

  • Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization. New York: Wiley.

    Google Scholar 

  • Gilmore, P., & Gomory, R. (1964). Sequencing a one state variable machine: A solvable case of the traveling salesman problem. Operations Research, 5, 655–679.

    Article  Google Scholar 

  • Grabowski, J., & Pempera, J. (2007). The permutation flowshop problem with blocking. a tabu search approach. Omega, 3, 302–11.

    Article  Google Scholar 

  • Graham, R., Lawler, E., Lenstra, J., & Rinnooy, K. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–362.

    Article  Google Scholar 

  • Han, Y.-Y., Gong, D., & Sun, X. (2014). A discrete artificial bee colony algorithm differential evolution for the flow-shop scheduling problem with blocking. Engineering Optimization, 47, 1–20.

    Google Scholar 

  • Han, Y.-Y., Liang, J., Pan, Q.-K., Li, J.-Q., Sang, H.-Y., & Cao, N. (2013). Effective hybrid discrete artificial bee colony algorithms for the total flowtime minimization in the blocking flowshop problem. International Journal of Advanced Manufacturing Technology, 67, 397–414.

    Article  Google Scholar 

  • Holland, H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Ishibuchi, H., & Murata, T. (1998). A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Transactions on Systems, Man and Cybernetics—Part C: Applications and Reviews, 28, 392–403.

    Article  Google Scholar 

  • Ishibuchi, H., Murata, T., & Tomioka, S. (1997). Effectiveness of genetic local search algorithms. Proceedings of the seventh international conference on genetic algorithms (pp. 505–512).

  • Jolai, F., Asefi, H., Rabiee, M., & Ramezanid, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, Transactions E: Industrial Engineering, 20, 861–872.

    Google Scholar 

  • Kamrani, A., Rong, W., & Gonzalez, R. (2001). A genetic algorithm methodology for data mining and intelligent knowledge acquisition. Computers & Industrial Engineering, 40, 361–377.

    Article  Google Scholar 

  • Karabati, S., & Kouvelis, P. (1996). Cycle scheduling in flow lines: Modeling observations, effective heuristics and a cycle time minimization procedure. Naval Research Logistics, 2, 21131.

    Google Scholar 

  • Khorasanian, D., & Moslehi, G. (2012). An iterated greedy algorithm for solving the blocking flow shop scheduling problem with total flow time criteria. International Journal of Industrial Engineering and Production Research, 23, 301–308.

    Google Scholar 

  • Levner, E. M. (1969). Optimal planning of parts machining on a number of machines. Automation and Remote Control, 12, 19728.

    Google Scholar 

  • Lin, S., & Ying, K. (2013). Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm. Omega, 41, 383–389.

    Article  Google Scholar 

  • Michalewicz, Z. (1999). Genetic Algorithms + Data Structures = Evolution Programs. Berlin: Springer.

    Google Scholar 

  • Moslehi, G., & Khorasanian, D. (2013). Optimizing blocking flowshop scheduling problem with total completion time criterion. Computers and Operations Research, 40, 1874–1883.

    Article  Google Scholar 

  • Murata, T., Ishibuchi, H., & Gen, M. (2000). Cellular genetic local search for multiobjective optimization. In Proceedings of the 2000 genetic and evolutionary computation conference, (pp. 307–314).

  • Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Multi-objective genetic algorithm and its applications to flow shop scheduling. Computers & Industrial Engineering, 30, 957–968.

    Article  Google Scholar 

  • Nawaz, M., Enscore, J., & Ham, I. (1993). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11, 91–95.

    Article  Google Scholar 

  • Nouri, N., & Ladhari, T. (2015). Minimizing regular objectives for blocking permutation flow shop scheduling: Heuristic approaches. In Proceedings of the genetic and evolutionary computation conference (pp. 441–448).

  • Pan, Q.-K., Wang, L., & Qian, B. (2009). A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Computers & Operations Research, 36, 2498–2511.

    Article  Google Scholar 

  • Pan, Q., Wang, L., Sang, H., Li, J., & Liu, M. (2013). A high performing memetic algorithm for the flowshop scheduling problem with blocking. IEEE Transactions on Automation Science and Engineering, 10, 741–756.

    Article  Google Scholar 

  • Pinedo, M. (2008). Scheduling: theory, algorithms, and systems. Englewood CliKs, NJ: Prentice-Hall.

    Google Scholar 

  • Ponnambalam, S. G., Jagannathan, H., Kataria, M., & Gadicherla, A. (2004). A TSP-GA multi-objective algorithm for flow shop scheduling. International Journal of Advanced Manufacturing Technology, 23, 909–915.

    Article  Google Scholar 

  • Rahimi-Vahed, A., & Mirzaei, A. H. (2008). Solving a bi-criteria permutation flow-shop problem using shuffled frog-leaping algorithm. Soft Computing, 12, 435–452.

    Article  Google Scholar 

  • Rahimi-Vahed, A. R., & Mirghorbani, S. M. (2007). A multi-objective particle swarm for a flow shop scheduling problem. Journal of Combinatorial Optimization, 13, 79–102.

    Article  Google Scholar 

  • Ravindran, D., Noorul Haq, A., Selvakuar, S. J., & Sivaraman, R. (2005). Flow shop scheduling with multiple objective of minimizing makespan and total flow time. International Journal of Advance Manufacturing Technology, 25, 1007–1012.

    Article  Google Scholar 

  • Reddi, S., & Ramamoorthy, C. (1972). On the flow-shop sequencing problem with no wait in process. Operational Research Quarterly, 3, 323–31.

    Article  Google Scholar 

  • Ribas, I., & Companys, R. (2015). Efficient heuristic algorithms for the blocking flow shop scheduling problem with total flow time minimization. Computers & Industrial Engineering, 87, 30–39.

    Article  Google Scholar 

  • Ribas, I., Companys, R., & Tort-Martorell, X. (2011). An iterated greedy algorithm for the flowhsop scheduling problem with blocking. Omega, 3, 293–301.

    Article  Google Scholar 

  • Ribas, I., Companys, R., & Tort-Martorell, X. (2013). An efficient iterated local search algorithm for the total tardiness blocking flow shop problem. International Journal of Production Research, 51(17), 5238–5252.

    Article  Google Scholar 

  • Ribas, I., Companys, R., & Tort-Martorell, X. (2015). An efficient discrete artificial bee colony algorithm for the blocking flow shop problem with total flowtime minimization. Expert Systems with Applications, 42, 6155–6167.

    Article  Google Scholar 

  • Rock, H. (1984). Some new results in flow shop scheduling. Zeitschrift fur Operations Research, 28, 1–16.

    Google Scholar 

  • Ronconi, D. P. (2005). A branch-and-bound algorithm to minimize the makespan in a flowshop problem with blocking. Annals of Operations Research, 1, 53–65.

    Article  Google Scholar 

  • Ronconi, D. P., & Armentano, V. A. (2001). Lower bounding schemes for flowshops with blocking in-process. Journal of the Operational Research Society, 11, 12897.

    Google Scholar 

  • Ronconi, D. P., & Henriques, L. R. S. (2009). Some heuristic algorithms for total tardiness minimization in a flowshop with blocking. Omega, 2, 272–81.

    Article  Google Scholar 

  • Sadaqa, M., & Moraga, R. J. (2015). Scheduling blocking flow shops using meta-RaPS. Procedia Computer Science, 61, 533–538.

    Article  Google Scholar 

  • Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In J. D. Schaffer (Ed.), Genetic algorithms and their applications: Proceedings of the first international conference on genetic algorithms (pp. 93–100). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Smutnicki, C., Pempera, J., Rudy, J., & Zelazny, D. (2015). A new approach for multi-criteria scheduling. Computers & Industrial Engineering, 90, 212–220.

    Article  Google Scholar 

  • Srinivas, N., & Deb, K. (1995). Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation, 2, 221–248.

    Article  Google Scholar 

  • Srinivas, N., & Deb, K. (1995). Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation, V2(3), 221–248.

    Article  Google Scholar 

  • Suhami, I., & Mah, R. S. H. (1981). An implicit enumeration scheme for the flowshop problem with no intermediate storage. Computers and Chemical Engineering, 2, 83–91.

    Article  Google Scholar 

  • Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64, 278–85.

    Article  Google Scholar 

  • Tavakkoli-Moghaddam, R., Rahimi-Vahed, A. R., & Mirzaei, A. H. (2007). Solving a bi-criteria permutation flow shop problem using immune algorithm. Proceedings of the First IEEE SymposiumonComputational Intelligence (Vol. 1, pp. 49–56). Hawaii: Honolulu.

    Google Scholar 

  • Toktas, B., Azizoglu, M., & Koksalan, S. K. (2004). Two-machine flow shop scheduling with two criteria: Maximum earliness and makespan. European Journal of Operational Research, 157, 286–295.

    Article  Google Scholar 

  • Van Veldhuizen, D. A., & Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Journal of Evolutionary Computation, 8(2000), 125–147.

    Article  Google Scholar 

  • Veldhuizen, D. V. (1999). Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations. Ph. D. Thesis, Dayton, OH: Air Force Institute of Technology.

  • Wang, X., & Tang, L. (2012). A discrete particle swarm optimization algorithm with self-adaptive diversity control for the permutation flowshop problem with blocking. Applied Soft Computing, 12, 652–662.

    Article  Google Scholar 

  • Wang, L., Pan, Q., Suganthan, P., Wang, W., & Wang, Y. (2010). A novel hybrid discrete differential evolution algorithm for blocking flowshop scheduling problems. Computers and Operational Research, 3, 509–520.

    Article  Google Scholar 

  • Wang, L., Pan, Q., & Tasgetiren, M. (2010). Minimizing the total flow time in a flowshop with blocking by using hybrid harmony search algorithms. Expert Systems with Applications, 12, 7929–7936.

    Article  Google Scholar 

  • Wang, L., Zhang, L., & Zheng, D.-Z. (2006). An effective hybrid genetic algorithm for flow shop scheduling with limited buffers. Computers and Operations Research, 33(10), 2960–2971. (Part Special Issue: Constraint Programming).

    Article  Google Scholar 

  • Yusoff, Y., Ngadiman, M. S., & Zain, A. M. (2011). Overview of NSGA-II for optimizing machining process parameters. Procedia Engineering, 15, 3978–3983.

    Article  Google Scholar 

  • Zitzler, E. (1999). Evolutionary algorithms for multi-objective optimization: Methods and applications. Ph.D. Thesis, Dissertation ETH No. 13398, Swiss Federal Institute of Technology (ETH), Zrich, Switzerland.

  • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength pareto evolutionary algorithm. Computer Engineering and Networks Laboratory (TIK) -Report 103 Sept.

  • Zitzler, E., & Thiele, L. (1999). Multiobjective optimization using evolutionary algorithms—A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouha Nouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, N., Ladhari, T. Evolutionary multiobjective optimization for the multi-machine flow shop scheduling problem under blocking. Ann Oper Res 267, 413–430 (2018). https://doi.org/10.1007/s10479-017-2465-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2465-8

Keywords

Navigation