Skip to main content
Log in

Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains

  • MCDM-SD
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The transport sector is highly dependent on fossil fuels with significant environmental impacts. This motivates the environmental assessment of alternative fuel options, including biodiesel based on agricultural crops. The assessment of biofuel alternatives for transportation can be facilitated by the integration of Life-Cycle Assessment (LCA) and Multi-Criteria Decision Analysis (MCDA). In this article, we compare four Rapeseed Methyl Ester biodiesel production chains, corresponding to four different feedstock origins. The environmental impact of each chain is assessed in the context of a LCA encompassing cultivation, transportation to Portugal, extraction and transesterification. We apply two different MCDA additive aggregation methodologies to aggregate various impact categories resulting from the Life Cycle Impact Assessment (LCIA) phase of the LCA. The chosen MCDA methodologies, Stochastic Multicriteria Analysis and Variable Interdependent Parameter Analysis, are two complementary approaches to address one of the main difficulties of MCDA: setting the relative weights of the evaluation criteria. Indeed, weighting the various impacts in the LCIA phase is a controversial issue in LCA research and studies. The LCIA–MCDA approach proposed in this work does not require choosing a specific weighting vector, seeking to assess which conclusions are robust given some freedom allowed in the choice of weights. To study further the robustness of the conclusions concerning the choice of the criteria, the effects of removing one criterion are analyzed, one at a time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Belton, V., & Stewart, T. (2001). Multiple criteria decision analysis. Berlin: Kluwer Academic Publishers.

    Google Scholar 

  • Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The Promethee method. European Journal of Operational Research, 24(2), 228–238. doi:10.1016/0377-2217(86)90044-5.

    Article  Google Scholar 

  • Butler, J., Jia, J., & Dyer, J. (1997). Simulation techniques for the sensitivity analysis of multi-criteria decision models. European Journal of Operational Research, 103, 531–546.

    Article  Google Scholar 

  • Cherubini, F., & Strømman, A. H. (2011). Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresource Technology, 102(2), 437–451. doi:10.1016/j.biortech.2010.08.010.

    Article  Google Scholar 

  • Council, E., & Parliament, E. Directive 2009/28/EC (2009). Official Journal of the European Union.

  • Daystar, J., Reeb, C., Gonzalez, R., Venditti, R., & Kelley, S. S. (2015). Environmental life cycle impacts of cellulosic ethanol in the Southern US produced from loblolly pine, eucalyptus, unmanaged hardwoods, forest residues, and switchgrass using a thermochemical conversion pathway. Fuel Processing Technology, 138, 164–174. doi:10.1016/j.fuproc.2015.04.019.

    Article  Google Scholar 

  • Dias, L. C., & Clímaco, J. N. (2000). Additive aggregation with variable interdependent parameters: The VIP analysis software. Journal of the Operational Research Society, 51(9), 1070–1082. Retrieved from http://www.jstor.org/stable/10.2307/254228.

  • Dias, L. C., & Domingues, A. R. (2014). On multi-criteria sustainability assessment: Spider-gram surface and dependence biases. Applied Energy, 113, 159–163. doi:10.1016/j.apenergy.2013.07.024.

    Article  Google Scholar 

  • Dinh, L. T. T., Guo, Y., & Mannan, M. S. (2009). Sustainability evaluation of biodiesel production using multicriteria decision making. Environmental Progress Sustainable Energy, 28(1), 38–46. doi:10.1002/ep.10335.

    Article  Google Scholar 

  • Domingues, A. R., Marques, P., Garcia, R., Freire, F., & Dias, L. C. (2015). Applying multi-criteria decision analysis to the life-cycle assessment of vehicles. Journal of Cleaner Production, 107, 749–759. doi:10.1016/j.jclepro.2015.05.086.

    Article  Google Scholar 

  • EEA. (2009). Greenhouse gas emissions trends and projections in Europe 2009 - Taking progress towards Kyoto targets. EEA Report No 9/2009, Copenhagen: European Environmental Agency.

  • Finco, A., Bentivoglio, D., & Nijkamp, P. (2012). Integrated evaluation of biofuel production options in agriculture?: An exploration of sustainable policy scenarios. International Journal of Foresight and Innovation Policy, 8(2–3), 173–188.

    Article  Google Scholar 

  • Finnveden, G. (1999). A critical review of operational valuation/weighting methods for life cycle assessment (AFR-REPORT 253 AFN). Stockholm: Swedish Environmental Protection Agency.

    Google Scholar 

  • Geldermann, J., & Rentz, O. (2005). Multi-criteria analysis for technique assessment: Case study from industrial coating. Journal of Industrial EcologyTechnology, 9(3), 127–142.

    Article  Google Scholar 

  • Hayashi, T., van Ierland, E. C., & Zhu, X. (2014). A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators. Biomass and Bioenergy, 66, 70–80. doi:10.1016/j.biombioe.2014.01.040.

    Article  Google Scholar 

  • Heijungs, R., Guinée, J., Kleijn, R., & Rovers, V. (2007). Bias in normalization: Causes, consequences, detection and remedies. The International Journal of Life Cycle Assessment, 12(4), 211–216. doi:10.1007/s11367-006-0260-x.

    Article  Google Scholar 

  • Ishizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis: Methods and software. Chichester: Wiley.

    Book  Google Scholar 

  • Kadziński, M., & Tervonen, T. (2013). Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements. European Journal of Operational Research, 228(1), 169–180. doi:10.1016/j.ejor.2013.01.022.

    Article  Google Scholar 

  • Kralisch, D., Staffel, C., Ott, D., Bensaid, S., Saracco, G., Bellantoni, P., et al. (2013). Process design accompanying life cycle management and risk analysis as a decision support tool for sustainable biodiesel production. Green Chemistry, 15(2), 463–477. doi:10.1039/c2gc36410g.

    Article  Google Scholar 

  • Lahdelma, R., Hokkanen, J., & Salminen, P. (1998). SMAA---Stochastic multiobjective acceptability analysis. European Journal of Operational Research, 106, 137–143.

    Article  Google Scholar 

  • Lahdelma, R., & Salminen, P. (2001). SMAA-2?: Stochastic multicriteria acceptability analysis for group decision making. Operations Research, 49(3), 444–454.

    Article  Google Scholar 

  • Leskinen, P., Viitanen, J., Kangas, A., & Kangas, J. (2006). Alternatives to incorporate uncertainty and risk attitude in multicriteria evaluation of forest plans. Forest Science, 52(3), 304–312.

    Google Scholar 

  • Maimoun, M., Madani, K., & Reinhart, D. (2016). Multi-level multi-criteria analysis of alternative fuels for waste collection vehicles in the United States. The Science of the Total Environment, 550, 349–361. doi:10.1016/j.scitotenv.2015.12.154.

    Article  Google Scholar 

  • Malça, J., Coelho, A., & Freire, F. (2014). Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations. Applied Energy, 114, 837–844. doi:10.1016/j.apenergy.2013.06.048.

    Article  Google Scholar 

  • Mohamadabadi, H. S., Tichkowsky, G., & Kumar, A. Ã. (2009). Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles. Energy, 34, 112–125. doi:10.1016/j.energy.2008.09.004.

    Article  Google Scholar 

  • Myllyviita, T., Holma, A., Antikainen, R., Lähtinen, K., & Leskinen, P. (2012). Assessing environmental impacts of biomass production chains - application of life cycle assessment (LCA) and multi-criteria decision analysis (MCDA). Journal of Cleaner Production, 29–30, 238–245. doi:10.1016/j.jclepro.2012.01.019.

    Article  Google Scholar 

  • Myllyviita, T., Leskinen, P., & Seppälä, J. (2014). Impact of normalisation, elicitation technique and background information on panel weighting results in life cycle assessment. International Journal of Life Cycle Assessment, 19, 377–386. doi:10.1007/s11367-013-0645-6.

    Article  Google Scholar 

  • Narayanan, D., Zhang, Y., & Mannan, M. S. (2007). Engineering for sustainable development (ESD) in bio-diesel production. Process Safety and Environmental Protection, 85, 349–359. doi:10.1205/psep07016.

    Article  Google Scholar 

  • Perimenis, A., Walimwipi, H., Zinoviev, S., & Miertus, S. (2011). Development of a decision support tool for the assessment of biofuels. Energy Policy, 39, 1782–1793. doi:10.1016/j.enpol.2011.01.011.

    Article  Google Scholar 

  • Prado-Lopez, V., Seager, T. P., Chester, M., Laurin, L., Bernardo, M., & Tylock, S. (2014). Stochastic multi-attribute analysis (SMAA) as an interpretation method for comparative life-cycle assessment (LCA). International Journal of Life Cycle Assessment, 19, 405–416. doi:10.1007/s11367-013-0641-x.

    Article  Google Scholar 

  • Ren, J., Manzardo, A., Mazzi, A., Zuliani, F., & Scipioni, A. (2015). Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. International Journal of Life Cycle Assessment, 20(6), 842–853. doi:10.1007/s11367-015-0877-8.

    Article  Google Scholar 

  • Rivière, C., & Marlair, G. (2009). BIOSAFUEL, a pre-diagnosis tool of risks pertaining to biofuels chains. Journal of Loss Prevention in the Process Industries, 22(2), 228–236. doi:10.1016/j.jlp.2008.09.014.

    Article  Google Scholar 

  • Rogers, K., & Seager, T. P. (2009). Environmental decision-making using life cycle impact assessment and stochastic multiattribute decision analysis?: A case study on alternative transportation fuels. Environmental Science & Technology, 43(6), 1718–1723.

    Article  Google Scholar 

  • Seppälä, J., Basson, L., Norris, G. A., Seppala, J., Basson, L., & Norris, G. A. (2002). Decision analysis frameworks for life-cycle impact assessment. Journal of Industrial Ecology, 5(4), 45–68.

    Article  Google Scholar 

  • Seppälä, J., & Hämäläinen, R. P. (2001). On the meaning of the distance-to-target weighting method and normalisation in life cycle impact assessment. The International Journal of Life Cycle Assessment, 6(4), 211–218. doi:10.1007/BF02979376.

    Article  Google Scholar 

  • Streimikiene, D., Balezentis, T., & Balezentiene, L. (2013). Comparative assessment of road transport technologies. Renewable and Sustainable Energy Reviews, 20, 611–618.

    Article  Google Scholar 

  • Suwelack, K., & Wüst, D. (2015). An approach to unify the appraisal framework for biomass conversion systems. Biomass and Bioenergy, 83, 354–365. doi:10.1016/j.biombioe.2015.10.012.

    Article  Google Scholar 

  • Tervonen, T. (2014). JSMAA: Open source software for SMAA computations. International Journal of Systems Science, 45(1), 69–81. doi:10.1080/00207721.2012.659706.

    Article  Google Scholar 

  • Tervonen, T., & Lahdelma, R. (2007). Implementing stochastic multicriteria acceptability analysis. European Journal of Operational Research, 178(2), 500–513. doi:10.1016/j.ejor.2005.12.037.

    Article  Google Scholar 

  • Turcksin, L., Macharis, C., Lebeau, K., Boureima, F., Van Mierlo, J., & Bram, S. (2011). A multi-actor multi-criteria framework to assess the stakeholder support for different biofuel options: The case of Belgium. Energy Policy, 39(1), 200–214. doi:10.1016/j.enpol.2010.09.033.

    Article  Google Scholar 

  • von Winterfeldt, D., & Edwards, W. (1986). Decision analysis and behavioral research. New York: Cambridge University Press.

    Google Scholar 

  • Zhou, Z., Joang, H., & Qin, L. (2007). Life cycle sustainability assessment of fuels. Fuel, 86, 256–263. doi:10.1016/j.fuel.2006.06.004.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by FCT grants PEst-OE/EEI/UI0308/2014, PTDC/SEN-TRA/117251/2010-FCOMP-01-0124-FEDER-021495 and PTDC/AAG-MAA/6234/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis C. Dias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, L.C., Passeira, C., Malça, J. et al. Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains. Ann Oper Res 312, 1359–1374 (2022). https://doi.org/10.1007/s10479-016-2329-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2329-7

Keywords

Navigation