Abramson, D. (1991). Constructing school timetables using simulated annealing: Sequential and parallel algorithms.

*Management Science*,

*37*(1), 98–113.

CrossRefGoogle ScholarAlzaqebah, M., & Abdullah, S. (2014). An adaptive artificial bee colony and late-acceptance hill-climbing algorithm for examination timetabling.

*Journal of Scheduling*,

*17*, 249–262.

CrossRefGoogle ScholarAlzaqebah, M., & Abdullah, S. (2015). Hybrid bee colony optimization for examination timetabling problems.

*Computers and Operations Research*,

*54*, 142–154.

CrossRefGoogle ScholarBellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., & Urli, T. (2016). Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem.

*Computers & Operations Research*,

*65*, 83–92.

CrossRefGoogle ScholarBellio, R., Di Gaspero, L., & Schaerf, A. (2012). Design and statistical analysis of a hybrid local search algorithm for course timetabling.

*Journal of Scheduling*,

*15*(1), 49–61.

CrossRefGoogle ScholarBirattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-race and iterated F-race: An overview. In Th. Bartz-Beielstein, M. Chiarandini, M. Paquete, & M. Preuss (Eds.), *Experimental methods for the analysis of optimization algorithms* (pp. 311–336). Springer: Berlin.

Burke, E. K., Qu, R., & Soghier, A. (2014). Adaptive selection of heuristics for improving exam timetables.

*Annals of Operations Research*,

*218*(1), 129–145.

CrossRefGoogle ScholarBykov, Y., & Petrovic, S. (2013). An initial study of a novel step counting hill climbing heuristic applied to timetabling problems. In *Proceedings of the 6th multidisciplinary international conference on scheduling: Theory and applications (MISTA-13)* (pp. 691–693).

Carter, M. W. (1986). A survey of practical applications of examination timetabling algorithms.

*Operations Research*,

*34*(2), 193–202.

CrossRefGoogle ScholarCarter, M.W., & Laporte, G. (1996). Recent developments in pratical examination timetabling. In Burke, E. K., Ross, P. (Ed.), *Proceedings of the 1st international conference on the practice and theory of automated timetabling (ICPTAT-95)*. *Lecture notes in computer science* (Vol. 1153, pp. 3–21). Berlin: Springer.

Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination timetabling: Algorithmic strategies and applications.

*Journal of the Operational Research Society*,

*74*, 373–383.

CrossRefGoogle ScholarCeschia, S., Di Gaspero, L., & Schaerf, A. (2012). Design, engineering, and experimental analysis of a simulated annealing approach to the post-enrolment course timetabling problem.

*Computers & Operations Research*,

*39*, 1615–1624.

CrossRefGoogle ScholarDi Gaspero, L., & Schaerf, A. (2003). EasyLocal++: An object-oriented framework for flexible design of local search algorithms. *Software-Practice and Experience*, *33*(8), 733–765.

Dowsland, K. A. (1990). A timetabling problem in which clashes are inevitable.

*Journal of the Operational Research Society*,

*41*(10), 907–918.

CrossRefGoogle ScholarGlover, F., & Laguna, M. (1997).

*Tabu search*. London: Kluwer Academic Publishers.

CrossRefGoogle ScholarGogos, C., Alefragis, P., & Housos, E. (2012). An improved multi-staged algorithmic process for the solution of the examination timetabling problem.

*Annals of Operations Research*,

*194*(1), 203–221.

CrossRefGoogle ScholarGogos, C., Goulas, G., Alefragis, P., Kolonias, V., & Housos, E. (2010). Distributed scatter search for the examination timetabling problem. In *Proceedings of the 8th international conference on the practice and theory of automated timetabling (PATAT-2010)* (pp. 211–223).

Hamilton-Bryce, R., McMullan, P., & McCollum, B. (2013). Directing selection within an extended great deluge optimization algorithm. In *Proceedings of the 6th multidisciplinary international conference on scheduling: Theory and applications (MISTA-13)* (pp. 499–508).

Hammersley, J. M., Handscomb, D. C., & Weiss, G. (1965). Monte Carlo methods.

*Physics Today*,

*18*, 55.

CrossRefGoogle ScholarJohnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1989). Optimization by simulated annealing: An experimental evaluation; part I, graph partitioning.

*Operations Research*,

*37*(6), 865–892.

CrossRefGoogle ScholarJolliffe, I. (2005).

*Principal component analysis*. Hoboken: Wiley Online Library.

CrossRefGoogle ScholarKoenker, R. (2005).

*Quantile regression*. Cambridge: Cambridge University Press.

CrossRefGoogle ScholarLopes, L., & Smith-Miles, K. (2010). Pitfalls in instance generation for Udine timetabling. In C. Blum, & R. Battiti (Eds.), *Learning and intelligent optimization (LION4)* (pp. 299–302). Berlin: Springer.

Mascia, F., Pellegrini, P., Birattari, M., & Stützle, T. (2014). An analysis of parameter adaptation in reactive tabu search.

*International Transactions in Operational Research*,

*21*(1), 127–152.

CrossRefGoogle ScholarMcCollum, B., McMullan, P. J., Parkes, A. J., Burke, E. K., & Abdullah, S. (2009). An extended great deluge approach to the examination timetabling problem. In *Proceedings of the 4th multidisciplinary international conference on scheduling: Theory and applications (MISTA-09)* (pp. 424–434).

McCollum, B. (2007). A perspective on bridging the gap in university timetabling. In E. Burke & H. Rudová (Eds.), *Proceedings of the 6th international conference on the practice and theory of automated timetabling (PATAT-2006), selected papers*. *Lecture notes in computer science*, (Vol. 3867, pp. 3–23). Berlin: Springer.

McCollum, B., McMullan, P., Burke, E. K., Parkes, A. J., & Qu, R. (2007). The second international timetabling competition: Examination timetabling track. Technical report QUB/IEEE/Tech/ITC2007/Exam/v4.0/17, Queen’s University, Belfast (UK), September.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., et al. (2010). Setting the research agenda in automated timetabling: The second international timetabling competition.

*INFORMS Journal on Computing*,

*22*(1), 120–130.

CrossRefGoogle ScholarMerlot, L., Boland, N., Hughes, B., & Stuckey, P. (2003). A hybrid algorithm for the examination timetabling problem. In B. Edmund & C. Patrick De (Eds.) *Proceedings of the 4th international conference on the practice and theory of automated timetabling (PATAT-2002), selected papers*. *Lecture notes in computer science* (Vol. 2740, pp. 207–231). Berlin: Springer.

Müller, T. (2009). ITC2007 solver description: A hybrid approach.

*Annals of Operations Research*,

*172*(1), 429–446.

CrossRefGoogle ScholarNethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., & Tack, G. (2007). MiniZinc: Towards a standard CP modelling language. In C. Bessière (Ed.), *Principles and practice of constraint programming CP 2007* (pp. 529–543). Berlin: Springer.

Özcan, E., Elhag, A., & Shah, V. (2012). A study of hyper-heuristics for examination timetabling. In *Proceedings of the 9th international conference on the practice and theory of automated timetabling (PATAT-2012)* (pp. 410–414).

Pillay, N. (2010). Evolving hyper-heuristics for a highly constrained examination timetabling problem. In *Proceedings of the 8th international conference on the practice and theory of automated timetabling (PATAT-2010)* (pp. 211–223).

Qu, R., Burke, E., McCollum, B., Merlot, L., & Lee, S. Y. (2009). A survey of search methodologies and automated system development for examination timetabling.

*Journal of Scheduling*,

*12*(1), 55–89.

CrossRefGoogle ScholarR Development Core Team (2008). *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing.

Sabar, N. R., Ayob, M., Kendall, G., & Qu, R. (2014). A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems.

*IEEE Transactions on Cybernetics*,

*45*(2), 217–228.

CrossRefGoogle ScholarSchaerf, A. (1999). A survey of automated timetabling.

*Artificial Intelligence Review*,

*13*(2), 87–127.

CrossRefGoogle ScholarSmith-Miles, K. A., & Lopes, L. (2011). Generalising algorithm performance in instance space: A timetabling case study. In C. A. Coello Coello (Ed.), *Learning and intelligent optimization (LION 2011)*. Lecture notes in computer science (Vol. 6683, pp. 524–538). Springer: Berlin.

Thompson, J. M., & Dowsland, K. A. (1996). Variants of simulated annealing for the examination timetabling problem.

*Annals of Operations Research*,

*63*(1), 105–128.

CrossRefGoogle ScholarThompson, J. M., & Dowsland, K. A. (1998). A robust simulated annealing based examination timetabling system.

*Computers and Operations Research*,

*25*(7), 637–648.

CrossRefGoogle ScholarUrli, T. (2013). json2run: A tool for experiment design & analysis.

*CoRR*,

arXiv:abs/1305.1112.