Skip to main content

Advertisement

Log in

Sustainable transport fleet appraisal using a hybrid multi-objective decision making approach

  • S.I.: Sustainable supply chain design and Mgt.
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

One of the most critical operational practices influencing the environmental sustainability of organizations and their supply chains is the transport of materials, products and people. The carbon footprints, materials depletion, and general pollution emissions from transport vehicles makes their environmental burdens significant. Thus, identifying, selecting and implementing more environmentally conscious transportation vehicles can be of paramount importance for the development and management of greener supply chains. Given the relative importance of this issue, it is surprising that research on transport fleet evaluation, especially from an environmental sustainability perspective, has been rather limited. A primary challenge in this context is the broad range of influencing factors that need to be considered, many of which are not fully and easily measurable. This paper aims to (1) develop a holistic framework for sustainable transport fleet appraisal incorporating various vehicle performance, economic and environmental criteria, (2) introduce a novel hybrid approach for sustainable transportation vehicle evaluation and selection by combining a three-parameter interval grey number with a rough set theory and VIKOR method, (3) investigate the application of the proposed approach in a case example where empirical data is collected from industry experts, (4) evaluate the robustness of the methodology through sensitivity analysis experiments, and (5) provide practical insights and directions for future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.pge.com/myhome/environment/pge/fleets/.

  2. http://www.epa.gov/oar/cleanairawards/winners-current.html.

  3. This term has also been defined as information entropy of a system (Liang and Shi 2004).

References

  • Abkowitz, M. D. (2002). Transportation risk management: A new paradigm. Security Papers (Knoxville: Southeastern Transportation Center, University of Tennessee), 6(4), 93–103.

  • Arsie, I., Rizzo, G., & Sorrentino, M. (2010). Effects of engine thermal transients on the energy management of series hybrid solar vehicles. Control Engineering Practice, 18(11), 1231–1238.

    Article  Google Scholar 

  • Awasthi, A., Chauhan, S. S., & Omrani, H. (2011). Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Expert Systems with Applications, 38(10), 12270–12280.

    Article  Google Scholar 

  • Bae, S. H., Sarkis, J., & Yoo, C. S. (2011). Greening transportation fleets: Insights from a two-stage game theoretic model. Transportation Research Part E: Logistics and Transportation Review, 47(6), 793–807.

    Article  Google Scholar 

  • Bai, C., & Sarkis, J. (2010a). Integrating sustainability into supplier selection with grey system and rough set methodologies. International Journal of Production Economics, 124(1), 252–264.

    Article  Google Scholar 

  • Bai, C., & Sarkis, J. (2010b). Green supplier development: Analytical evaluation using rough set theory. Journal of Cleaner Production, 18(12), 1200–1210.

    Article  Google Scholar 

  • Bai, C., & Sarkis, J. (2013a). Green information technology strategic justification and evaluation. Information Systems Frontiers, 15(5), 831–847.

    Article  Google Scholar 

  • Bai, C., & Sarkis, J. (2013b). Flexibility in reverse logistics: A framework and evaluation approach. Journal of Cleaner Production, 47, 306–318.

    Article  Google Scholar 

  • Bai, C., & Sarkis, J. (2014a). Determining and applying sustainable supplier key performance indicators. Supply Chain Management: An International Journal, 19(3), 5–5.

    Article  Google Scholar 

  • Bai, C., & Sarkis, J. (2014b). Supplier development investment strategies: A game theoretic evaluation. Annals of Operations Research. doi:10.1007/s10479-014-1737-9.

  • Bai, C., Sarkis, J., & Dou, Y. (2015). Corporate sustainability development in China: Review and analysis. Industrial Management & Data Systems, 115(1), 5–40.

    Article  Google Scholar 

  • Bai, C., Sarkis, J., Wei, X., & Koh, L. (2012). Evaluating ecological sustainable performance measures for supply chain management. Supply Chain Management: An International Journal, 17(1), 78–92.

    Article  Google Scholar 

  • Browne, D., O’Mahony, M., & Caulfield, B. (2012). How should barriers to alternative fuels and vehicles be classified and potential policies to promote innovative technologies be evaluated? Journal of Cleaner Production, 35, 140–151.

    Article  Google Scholar 

  • Byrne, M. R., & Polonsky, M. J. (2001). Impediments to consumer adoption of sustainable transportation: Alternative fuel vehicles. International Journal of Operations & Production Management, 21(12), 1521–1538.

    Article  Google Scholar 

  • Calef, D., & Goble, R. (2007). The allure of technology: How France and California promoted electric and hybrid vehicles to reduce urban air pollution. Policy Sciences, 40(1), 1–34.

    Article  Google Scholar 

  • Canter, L. W., Canter, L. W., Canter, L. W., & Canter, L. W. (1977). Environmental impact assessment (p. 27). New York: McGraw-Hill.

    Google Scholar 

  • Capasso, C., & Veneri, O. (2014). Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles. Applied Energy, 136, 921–930.

    Article  Google Scholar 

  • Damart, S., & Roy, B. (2009). The uses of cost-benefit analysis in public transportation decision-making in France. Transport Policy, 16(4), 200–212.

    Article  Google Scholar 

  • Dao, V., Langella, I., & Carbo, J. (2011). From green to sustainability: Information technology and an integrated sustainability framework. The Journal of Strategic Information Systems, 20(1), 63–79.

    Article  Google Scholar 

  • Deakin, E. (2001). Sustainable development and sustainable transportation: Strategies for economic prosperity, environmental quality, and equity. Institute of Urban & Regional Development. https://escholarship.org/uc/item/0m1047xc.

  • Deng, J. L. (1989). Introduction to grey system theory. The Journal of Grey System, 1(1), 1–24.

    Google Scholar 

  • Do, D. H., Van Langenhove, H., Chigbo, S. I., Amare, A. N., Demeestere, K., & Walgraeve, C. (2014). Exposure to volatile organic compounds: Comparison among different transportation modes. Atmospheric Environment, 94, 53–62.

    Article  Google Scholar 

  • Egbue, O., & Long, S. (2012). Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions. Energy Policy, 48, 717–729.

    Article  Google Scholar 

  • EU (2000). Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles. Official Journal of the European Communities, L 269, 34–42.

  • EU (2003). Directive 2002/95/EC of the European Parliament and or the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Union, L 037, 19–23.

  • Ewing, G., & Sarigöllü, E. (2000). Assessing consumer preferences for clean-fuel vehicles: A discrete choice experiment. Journal of Public Policy & Marketing, 19(1), 106–118.

    Article  Google Scholar 

  • Fahimnia, B., Bell, M. G., Hensher, D. A., & Sarkis, J. (2015a). Green logistics and transportation: A sustainable supply chain perspective. Berlin: Springer.

    Book  Google Scholar 

  • Fahimnia, B., Reisi, M., Paksoy, T., & Özceylan, E. (2013a). The implications of carbon pricing in Australia: An industrial logistics planning case study. Transportation Research-Part D, 18, 78–85.

    Article  Google Scholar 

  • Fahimnia, B., Sarkis, J., Boland, J., Reisi, M., & Goh, M. (2015b). Policy insights from a green supply chain optimisation model. International Journal of Production Research, 53(21), 6522–6533.

  • Fahimnia, B., Sarkis, J., Choudhary, A., & Eshragh, A. (2015c). Tactical supply chain planning under a carbon tax policy scheme: A case study. International Journal of Production Economics, 164, 206–215.

  • Fahimnia, B., Sarkis, J., & Davarzani, H. (2015d). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114.

  • Fahimnia, B., Sarkis, J., Dehghanian, F., Banihashemi, N., & Rahman, S. (2013b). The impact of carbon pricing on a closed-loop supply chain: An Australian case study. Journal of Cleaner Production, 59, 210–225.

  • Fahimnia, B., Sarkis, J., & Eshragh, A. (2015e). A tradeoff model for green supply chain planning: A leanness-versus-greenness analysis. Omega, 54, 173–190.

  • Gehin, A., Zwolinski, P., & Brissaud, D. (2008). A tool to implement sustainable end-of-life strategies in the product development phase. Journal of Cleaner Production, 16(5), 566–576.

    Article  Google Scholar 

  • Gunasekaran, A., & Spalanzani, A. (2012). Sustainability of manufacturing and services: Investigations for research and applications. International Journal of Production Economics, 140(1), 35–47.

    Article  Google Scholar 

  • Hsu, C. Y., Yang, C. S., Yu, L. C., Lin, C. F., Yao, H. H., Chen, D. Y., et al. (2014). Development of a cloud-based service framework for energy conservation in a sustainable intelligent transportation system. International Journal of Production Economics, 164, 454–461.

  • King, D. (2013). UPS puts 100 electric trucks into service in central California. Autobloggreen. http://green.autoblog.com/2013/02/08/ups-puts-100-electric-trucks-into-service-in-central-california/.

  • Lane, B., & Potter, S. (2007). The adoption of cleaner vehicles in the UK: Exploring the consumer attitude-action gap. Journal of Cleaner Production, 15(11), 1085–1092.

    Article  Google Scholar 

  • Li, P., Tan, T. C., & Lee, J. Y. (1997). Grey relational analysis of amine inhibition of mild steel corrosion in acids. Corrosion, 53(3), 186–194.

    Article  Google Scholar 

  • Liang, J., & Shi, Z. (2004). The information entropy, rough entropy and knowledge granulation in rough set theory. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(1), 37–46.

    Article  Google Scholar 

  • Liang, J., Shi, Z., Li, D., & Wierman, M. J. (2006). Information entropy, rough entropy and knowledge granulation in incomplete information systems. International Journal of General Systems, 35(6), 641–654.

    Article  Google Scholar 

  • Lin, Y. H., Lee, P. C., & Ting, H. I. (2008). Dynamic multi-attribute decision making model with grey number evaluations. Expert Systems with Applications, 35(4), 1638–1644.

    Article  Google Scholar 

  • Litman, T. (2005). Efficient vehicles versus efficient transportation. Comparing transportation energy conservation strategies. Transport Policy, 12(2), 121–129.

    Article  Google Scholar 

  • Litman, T. (2013). Transportation and public health. Annual Review of Public Health, 34, 217–233.

    Article  Google Scholar 

  • Litman, T., & Burwell, D. (2006). Issues in sustainable transportation. International Journal of Global Environmental Issues, 6(4), 331–347.

    Article  Google Scholar 

  • Luo, D., & Wang, X. (2012). The multi-attribute grey target decision method for attribute value within three-parameter interval grey number. Applied Mathematical Modelling, 36(5), 1957–1963.

    Article  Google Scholar 

  • Luo, D., Wang, X., & Song, B. (2013). Multi-attribute decision-making methods with three-parameter interval grey number. Grey Systems: Theory and Application, 3(3), 305–315.

    Article  Google Scholar 

  • Mabit, S. L., & Fosgerau, M. (2011). Demand for alternative-fuel vehicles when registration taxes are high. Transportation Research Part D: Transport and Environment, 16(3), 225–231.

    Article  Google Scholar 

  • Meng, Q. Y., & Bentley, R. W. (2008). Global oil peaking: Responding to the case for ‘abundant supplies of oil’. Energy, 33(8), 1179–1184.

    Article  Google Scholar 

  • Mihyeon Jeon, C., & Amekudzi, A. (2005). Addressing sustainability in transportation systems: Definitions, indicators, and metrics. Journal of Infrastructure Systems, 11(1), 31–50.

    Article  Google Scholar 

  • Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377–390.

    Article  Google Scholar 

  • Nakahara, Y., Sasaki, M., & Gen, M. (1992). On the linear programming problems with interval coefficients. Computers & Industrial Engineering, 23(1), 301–304.

    Article  Google Scholar 

  • Nanaki, E. A., & Koroneos, C. J. (2012). Comparative LCA of the use of biodiesel, diesel and gasoline for transportation. Journal of Cleaner Production, 20(1), 14–19.

    Article  Google Scholar 

  • Norman, W., & MacDonald, C. (2004). Getting to the bottom of triple bottom line. Business Ethics Quarterly, 14(2), 243–262.

    Article  Google Scholar 

  • Ong, C. S., Huang, J. J., & Tzeng, G. H. (2005). Building credit scoring models using genetic programming. Expert Systems with Applications, 29(1), 41–47.

    Article  Google Scholar 

  • Opricovic, S., & Tzeng, G. H. (2002). Multicriteria planning of post-earthquake sustainable reconstruction. Computer-Aided Civil and Infrastructure Engineering, 17(3), 211–220.

    Article  Google Scholar 

  • Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.

    Article  Google Scholar 

  • Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178(2), 514–529.

    Article  Google Scholar 

  • Orsato, R. J., & Wells, P. (2007). U-turn: The rise and demise of the automobile industry. Journal of Cleaner Production, 15(11), 994–1006.

    Article  Google Scholar 

  • Ou Yang, Y. P., Shieh, H. M., & Tzeng, G. H. (2013). A VIKOR technique based on DEMATEL and ANP for information security risk control assessment. Information Sciences, 232, 482–500.

    Article  Google Scholar 

  • Pai, T. Y., Hanaki, K., Ho, H. H., & Hsieh, C. M. (2007). Using grey system theory to evaluate transportation effects on air quality trends in Japan. Transportation Research Part D: Transport and Environment, 12(3), 158–166.

    Article  Google Scholar 

  • Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11(5), 341–356.

    Article  Google Scholar 

  • Phillis, Y. A., & Andriantiatsaholiniaina, L. A. (2001). Sustainability: An ill-defined concept and its assessment using fuzzy logic. Ecological Economics, 37(3), 435–456.

    Article  Google Scholar 

  • Reichmuth, D. S., Lutz, A. E., Manley, D. K., & Keller, J. O. (2013). Comparison of the technical potential for hydrogen, battery electric, and conventional light-duty vehicles to reduce greenhouse gas emissions and petroleum consumption in the United States. International Journal of Hydrogen Energy, 38(2), 1200–1208.

    Article  Google Scholar 

  • Rose, L., Hussain, M., Ahmed, S., Malek, K., Costanzo, R., & Kjeang, E. (2013). A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city. Energy Policy, 52, 453–461.

    Article  Google Scholar 

  • Russo, F., & Comi, A. (2010). Measures for sustainable freight transportation at urban scale: Expected goals and tested results in Europe. Journal of Urban Planning and Development, 137(2), 142–152.

    Article  Google Scholar 

  • Safaei Mohamadabadi, H., Tichkowsky, G., & Kumar, A. (2009). Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles. Energy, 34(1), 112–125.

    Article  Google Scholar 

  • Sarkis, J., & Sundarraj, R. P. (2000). Factors for strategic evaluation of enterprise information technologies. International Journal of Physical Distribution & Logistics Management, 30(3/4), 196–220.

    Article  Google Scholar 

  • Sawicki, P., & Żak, J. (2009). Technical diagnostic of a fleet of vehicles using rough set theory. European Journal of Operational Research, 193(3), 891–903.

    Article  Google Scholar 

  • Shah, N., Kumar, S., Bastani, F., & Yen, I. (2012). Optimization models for assessing the peak capacity utilization of intelligent transportation systems. European Journal of Operational Research, 216(1), 239–251.

    Article  Google Scholar 

  • Shiftan, Y., Kaplan, S., & Hakkert, S. (2003). Scenario building as a tool for planning a sustainable transportation system. Transportation Research Part D: Transport and Environment, 8(5), 323–342.

    Article  Google Scholar 

  • Takeshita, T. (2012). Assessing the co-benefits of \(\text{ CO }_2\) mitigation on ai pollutants emissions from road vehicles. Applied Energy, 97, 225–237.

    Article  Google Scholar 

  • Tzeng, G. H., Lin, C. W., & Opricovic, S. (2005). Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy, 33(11), 1373–1383.

    Article  Google Scholar 

  • Varsei, M., Soosay, C., Fahimnia, B., & Sarkis, J. (2014). Framing sustainability performance of supply chains with multidimensional indicators. Supply Chain Management: An International Journal, 19(3), 242–257.

    Article  Google Scholar 

  • Vermeulen, I., Van Caneghem, J., Block, C., Baeyens, J., & Vandecasteele, C. (2011). Automotive shredder residue (ASR): Reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. Journal of Hazardous Materials, 190(1), 8–27.

    Article  Google Scholar 

  • Wang, D., Zamel, N., Jiao, K., Zhou, Y., Yu, S., Du, Q., et al. (2013). Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China. Energy, 59, 402–412.

    Article  Google Scholar 

  • Wang, J., Lu, H., & Peng, H. (2008). System dynamics model of urban transportation system and its application. Journal of Transportation Systems Engineering and Information Technology, 8(3), 83–89.

    Article  Google Scholar 

  • Wood, C. (2003). Environmental impact assessment: A comparative review. New York: Pearson Education.

  • Yan, X., & Crookes, R. J. (2010). Energy demand and emissions from road transportation vehicles in China. Progress in Energy and Combustion Science, 36(6), 651–676.

    Article  Google Scholar 

  • Yedla, S., & Shrestha, R. M. (2003). Multi-criteria approach for the selection of alternative options for environmentally sustainable transport system in Delhi. Transportation Research Part A: Policy and Practice, 37(8), 717–729.

    Google Scholar 

  • Yeh, S. (2007). An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles. Energy Policy, 35(11), 5865–5875.

    Article  Google Scholar 

  • Yu, P. L. (1973). A class of solutions for group decision problems. Management Science, 19(8), 936–946.

    Article  Google Scholar 

  • Zakeri, A., Dehghanian, F., Fahimnia, B., & Sarkis, J. (2015). Carbon pricing versus emissions trading: A supply chain planning perspective. International Journal of Production Economics, 164, 197–205.

    Article  Google Scholar 

  • Zhang, T., Gensler, S., & Garcia, R. (2011). A study of the diffusion of alternative fuel vehicles: An agent-based modeling approach*. Journal of Product Innovation Management, 28(2), 152–168.

    Article  Google Scholar 

  • Zhao, J., & Melaina, M. W. (2006). Transition to hydrogen-based transportation in China: Lessons learned from alternative fuel vehicle programs in the United States and China. Energy Policy, 34(11), 1299–1309.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China Project (71102090, 71472031), Liaoning Excellent Talents in University (WJQ2014029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguang Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Fahimnia, B. & Sarkis, J. Sustainable transport fleet appraisal using a hybrid multi-objective decision making approach. Ann Oper Res 250, 309–340 (2017). https://doi.org/10.1007/s10479-015-2009-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-2009-z

Keywords

Navigation