Skip to main content
Log in

Information security investment for competitive firms with hacker behavior and security requirements

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper investigates information security investment strategies under both targeted attacks and mass attacks by considering strategic interactions between two competitive firms and a hacker. We find that the more attractive firm invests more in information security, suffers more frequent attacks and enjoys a lower expected benefit, while the hacker achieves a higher expected benefit under targeted attacks than under mass attacks. We further examine the effect of security requirements on the two firms’ investment strategies in information security. We indicate that security requirements sometimes can drastically alter the comparisons of these investment strategies under the two types of cyber attacks. The hacker would balance the firms’ attractiveness in information assets and security requirements when determining its investment decisions in cyber attacks. By assuming that security requirements are endogenous, we demonstrate that under targeted attacks and mass attacks both firms would like to regulate rigorous security requirements when their degree of competition becomes fierce but would like to choose loose security requirements when the degree of competition remains mild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In current discussions, although we assume one hacker in the model, one can refer to two types of hackers who can launch targeted attacks and mass attacks, respectively. However, if we focus on just one hacker, one can assume this hacker who launches mass attacks is able to launch targeted attacks through some costly learning to target. In this situation, depending on the comparison between the target-search cost and the expected benefit increase from mass attacks to targeted attacks, the hacker may choose a particular benefit-maximizing attack mode in equilibrium. We would like to thank one anonymous reviewer for pointing out this finding.

  2. In fact, when security requirements for both firms are so loose that \(PR_1 >\max (P_{T,1}^{*} ,P_{M,1}^{*} )\) and \(PR_2 >\max (P_{T,2}^{*} ,P_{M,2}^{*} )\), the sums of hacker investments under targeted attacks and mass attacks are still unchanged.

  3. We would like to thank one anonymous reviewer for providing the first three interesting model extensions.

References

  • Anderson, R. (2001). Why information security is hard: an economic perspective. In: Proceedings of the seventeenth computer security applications conference, (pp. 358–365). IEEE Computer Society Press.

  • Anderson, R. (2002). Security in open versus closed systems-the dance of Boltzmann. Coase and Moore: Technical report Cambridge University England.

  • Anderson, R., & Moore, T. (2006). The economics of information security. Science, 314(5799), 610–613.

    Article  Google Scholar 

  • Arora, A., Nandkumar, A., & Telang, R. (2006). Does information security attack frequency increase with vulnerability disclosure?—An empirical analysis. Information Systems Frontiers, 8(5), 350–362.

    Article  Google Scholar 

  • Bandyopadhyay, T., Jacob, V., & Raghunathan, S. (2010). Information security in networked supply chains: Impact of network vulnerability and supply chain integration on incentives to invest. Information Technology and Management, 11(1), 7–23.

    Article  Google Scholar 

  • Bandyopadhyay, T., Liu, D., Mookerjee, V. S., & Wilhite, A. W. (2014). Dynamic competition in IT security: A differential games approach. Information Systems Frontiers, 16(4), 643–661.

  • Cavusoglu, H., & Raghunathan, S. (2004). Configuration of detection software: A comparison of decision and game theory approaches. Decision Analysis, 1(3), 131–148.

    Article  Google Scholar 

  • Cavusoglu, H., Mishra, B., & Raghunathan, S. (2005). The value of intrusion detection systems (IDSs) in information technology security. Information Systems Research, 16(1), 28–46.

    Article  Google Scholar 

  • Cavusoglu, H., Raghunathan, S., & Yue, W. T. (2008). Decision-theoretic and game-theoretic approaches to IT security investment. Journal of Management Information Systems, 25(2), 281–304.

    Article  Google Scholar 

  • Cavusoglu, H., & Raghunathan, S. (2009). Configuration of and interaction between information security technologies: The case of firewalls and intrusion detection systems. Information Systems Research, 20(2), 198–217.

    Article  Google Scholar 

  • Cremonini, M., & Nizovtsev, D. (2009). Risks and benefits of signaling information system characteristics to strategic attackers. Journal of Management Information Systems, 26(3), 241–274.

    Article  Google Scholar 

  • Gao, X., Zhong, W., & Mei, S. (2013a). Information security investment when hackers disseminate knowledge. Decision Analysis, 10(4), 352–368.

    Article  Google Scholar 

  • Gao, X., Zhong, W., & Mei, S. (2013b). A differential game approach to information security investment under hackers’ knowledge dissemination. Operations Research Letters, 41(5), 421–425.

    Article  Google Scholar 

  • Gao, X., Zhong, W., & Mei, S. (2014). A game-theoretic analysis of information sharing and security investment for complementary firms. Journal of the Operational Research Society, 65(11), 1682–1691.

  • Gao, X., Zhong, W., & Mei, S. (2015). Security investment and information sharing under an alternative security breach probability function. Information Systems Frontiers, 17(2), 423–438.

  • Gordon, L. A., & Loeb, M. P. (2002). The economics of information security investment. ACM Transactions on Information and System Security, 5(4), 438–457.

    Article  Google Scholar 

  • Gordon, L. A., & Loeb, M. P. (2006). Economic aspects of information security: An emerging field of research. Information Systems Frontiers, 8(5), 335–337.

    Article  Google Scholar 

  • Gal-Or, E., & Ghose, A. (2005). The economic incentives for sharing security information. Information Systems Research, 16(2), 186–208.

    Article  Google Scholar 

  • Hausken, K. (2006b). Returns to information security investment: The effect of alternative information security breach functions on optimal investment and sensitivity to vulnerability. Information Systems Frontiers, 8(5), 338–349.

  • Hausken, K. (2007). Information sharing among firms and cyber attacks. Journal of Accounting and Public Policy, 26(6), 639–688.

    Article  Google Scholar 

  • Huang, C. D., Qing, H., & Ravi, B. (2008). An economic analysis of the optimal information security investment in the case of a risk-averse firm. International Journal of Production Economics, 114(2), 793–804.

    Article  Google Scholar 

  • Huang, C. D., & Behara, R. S. (2013). Economics of information security investment in the case of concurrent heterogeneous attacks with budget constraints. International Journal of Production Economics, 141(1), 255–268.

    Article  Google Scholar 

  • Hui, K. L., Hui, W., & Yue, W. T. (2012). Information security outsourcing with system interdependency and mandatory security requirement. Journal of Management Information Systems, 29(3), 117–155.

    Article  Google Scholar 

  • Liu, D., Ji, Y., & Mookerjee, V. (2011). Knowledge sharing and investment decisions in information security. Decision Support Systems, 52(1), 95–107.

    Article  Google Scholar 

  • Png, I. P. L., & Wang, Q. H. (2009). Information security facilitating user precautions vis-a-vis enforcement against attackers. Journal of Management Information Systems, 26(2), 97–121.

    Article  Google Scholar 

  • Ransbotham, S., & Mitra, S. (2009). Choice and chance: A conceptual model of paths to information security compromise. Information Systems Research, 20(1), 121–139.

    Article  Google Scholar 

  • Tanaka, H., Matsuura, K., & Sudoh, O. (2005). Vulnerability and information security investment: An empirical analysis of e-local government in Japan. Journal of Accounting and Public Policy, 24(1), 37–59.

    Article  Google Scholar 

  • Wu, D., Baron, O., & Berman, O. (2009). Bargaining in competing supply chains with uncertainty. European Journal of Operational Research, 197(2), 548–556.

    Article  Google Scholar 

  • Wu, D., & Olson, D. (2010a). Enterprise risk management: Coping with model risk in a large bank. Journal of the Operational Research Society, 61(2), 179–190.

    Article  Google Scholar 

  • Wu, D., & Olson, D. (2010b). Enterprise Risk Management: A DEA VaR approach in vendor selection. International Journal of Production Research, 48(16), 4919–4932.

    Article  Google Scholar 

  • Wu, D., & Olson, D. (2011). Introduction to special issue on “Enterprise risk management in operations”. International Journal of Production Economics, 134(1), 1–2.

    Article  Google Scholar 

  • Wu, D., Olson, D., & Birge, J. (2012). Operational research in risk management. Computers & Operations Research, 39(4), 751–752.

    Article  Google Scholar 

  • Wu, D. (2013a). Coordination of competing supply chains with news-vendor and buyback contract. International Journal of Production Economics, 144(1), 1–13.

    Article  Google Scholar 

  • Wu, D. (2013b). Bargaining in supply chain with price and promotional effort dependent demand. Mathematical and Computer Modelling, 58(9–10), 1659–1669.

    Google Scholar 

  • Wu, D., & Olson, D. (2013). Computational simulation and risk analysis: An introduction of state of the art research. Mathematical and Computer Modelling, 58(9), 1581–1587.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the editor and anonymous referees for their feedback of valuable comments and helpful suggestions that helped substantially improve the quality and the presentation of this manuscript. This study was supported by the Fundamental Research Support Funds from Southeast University (no. 2242015S20002) and the Fundamental Research Funds for the Central Universities (no. 2242014K10019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Gao.

Appendix

Appendix

Proof of Lemma 1

The first-order conditions of the two firms and the hacker are

$$\begin{aligned} \frac{\partial \pi _i }{\partial z_i }= & {} \beta kc_i^\phi z_i ^{-\beta -1}(V_i -F_i +\Delta )-1=0\end{aligned}$$
(18)
$$\begin{aligned} \frac{\partial H}{\partial c_i }= & {} \phi kc_i^{\phi -1} z_i ^{-\beta }a(V_i -F_i )-1=0. \end{aligned}$$
(19)

One can obtain Eq. (3) by (18) and (19). Obviously, the second-order conditions of the equilibrium strategies are satisfied. \(\square \)

Proof of Lemma 2

The first-order conditions of the two firms and the hacker are

$$\begin{aligned} \frac{\partial \pi _i }{\partial z_i }=\beta kc^{\phi }z_i^{-\beta -1} (V_i -F_i +\Delta )-1=0 \end{aligned}$$
(20)

and

$$\begin{aligned} \frac{\partial H}{\partial c}=\phi kac^{\phi -1}[z_1^{-\beta } (V_1 -F_1 )+z_2^{-\beta } (V_2 -F_2 )]-2=0 \end{aligned}$$
(21)

One can obtain by Eq. (20)

$$\begin{aligned} z_i =[\beta k(V_i -F_i +\Delta )]^{\frac{1}{1+\beta }}c^{\frac{\phi }{1+\beta }} \end{aligned}$$
(22)

which, together with Eq. (21), yields Eq. (7). The second-order conditions for equilibrium strategies can be validated easily. \(\square \)

Proof of Proposition 1

One can get by Lemma 1 and Lemma 2

$$\begin{aligned} \left\{ {\begin{array}{l} \frac{c_{T,1}^{*} }{c_M^{*} }=\left[ {\frac{1}{2}+\left( {\frac{V_1 -F_1 +\Delta }{V_2 -F_2 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{2(V_1 -F_1 )}} \right] ^{-\frac{1+\beta }{1-\phi +\beta }} \\ \frac{c_{T,2}^{*} }{c_M^{*} }=\left[ {\frac{1}{2}+\left( {\frac{V_2 -F_2 +\Delta }{V_1 -F_1 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{2(V_2 -F_2 )}} \right] ^{-\frac{1+\beta }{1-\phi +\beta }} \\ \end{array}} \right. \quad . \end{aligned}$$
(23)

Because \(\frac{V_1 -F_1 +\Delta }{V_2 -F_2 +\Delta }\) decreases with \(\Delta \) and \(\frac{V_2 -F_2 +\Delta }{V_1 -F_1 +\Delta }\) increases with \(\Delta \), one can find that

$$\begin{aligned} \left\{ {\begin{array}{l} \frac{c_{T,1}^{*} }{c_M^{*} }>\left[ {\frac{1}{2}+\left( {\frac{V_1 -F_1 }{V_2 -F_2 }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{2(V_1 -F_1 )}} \right] ^{-\frac{1+\beta }{1-\phi +\beta }}=\left[ {\frac{1}{2}+\frac{1}{2}\left( {\frac{V_1 -F_1 }{V_2 -F_2 }} \right) ^{-\frac{1}{1+\beta }}} \right] ^{-\frac{1+\beta }{1-\phi +\beta }}>1 \\ \frac{c_{T,2}^{*} }{c_M^{*} }<\left[ {\frac{1}{2}+\left( {\frac{V_2 -F_2 }{V_1 -F_1 }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{2(V_2 -F_2 )}} \right] ^{-\frac{1+\beta }{1-\phi +\beta }}=\left[ {\frac{1}{2}+\frac{1}{2}\left( {\frac{V_2 -F_2 }{V_1 -F_1 }} \right) ^{-\frac{1}{1+\beta }}} \right] ^{-\frac{1+\beta }{1-\phi +\beta }}<1 \\ \end{array}} \right. . \end{aligned}$$
(24)

which imply that \(c_{T,2}^{*} <c_M^{*} <c_{T,1}^{*} \).

One can obtain

$$\begin{aligned}&\mathrm{sign}(z_{T,1}^{*} -z_{M,1}^{*} )\nonumber \\&\quad =\mathrm{sign} \left\{ {(V_1 -F_1 )^{\frac{\phi }{1-\phi +\beta }} -\left[ {\frac{V_1 -F_1 }{2}+\left( {\frac{V_1 -F_1 +\Delta }{V_2 -F_2 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{2}} \right] ^{\frac{\phi }{1-\phi +\beta }}} \right\} . \nonumber \\ \end{aligned}$$
(25)

Note \(V_1 -F_1 >\frac{V_1 -F_1 }{2}+\left( {\frac{V_1 -F_1 +\Delta }{V_2 -F_2 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{2}\) if and only if

$$\begin{aligned} \left( {\frac{V_1 -F_1 +\Delta }{V_2 -F_2 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{V_1 -F_1 }<1 \end{aligned}$$

which always holds because

$$\begin{aligned} \left( {\frac{V_1 -F_1 +\Delta }{V_2 -F_2 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{V_1 -F_1 }<\left( {\frac{V_1 -F_1 }{V_2 -F_2 }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{V_1 -F_1 }=\left( {\frac{V_2 -F_2 }{V_1 -F_1 }} \right) ^{\frac{1}{1+\beta }}<1.\qquad \end{aligned}$$
(26)

Hence, \(z_{T,1}^{*} >z_{M,1}^{*}\).

Similarly, some calculations yield

$$\begin{aligned}&\mathrm{sign}(z_{T,2}^{*} -z_{M,2}^{*} )\nonumber \\&\quad =\mathrm{sign}\left\{ {(V_2 -F_2 )^{\frac{\phi }{1-\phi +\beta }}-\left[ {\frac{V_2 -F_2 }{2}+\left( {\frac{V_2 -F_2 +\Delta }{V_1 -F_1 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{2}} \right] ^{\frac{\phi }{1-\phi +\beta }}} \right\} \qquad \end{aligned}$$
(27)

One can find \(V_2 -F_2 <\frac{V_2 -F_2 }{2}+\left( {\frac{V_2 -F_2 +\Delta }{V_1 -F_1 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{2}\) if and only if

$$\begin{aligned} \left( {\frac{V_2 -F_2 +\Delta }{V_1 -F_1 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{V_2 -F_2 }>1, \end{aligned}$$

which always holds because

$$\begin{aligned} \left( {\frac{V_2 -F_2 +\Delta }{V_1 -F_1 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{V_2 -F_2 }>\left( {\frac{V_2 -F_2 }{V_1 -F_1 }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{V_2 -F_2 }=\left( {\frac{V_1 -F_1 }{V_2 -F_2 }} \right) ^{\frac{1}{1+\beta }}>1,\qquad \end{aligned}$$
(28)

implying that \(z_{T,2}^{*} <z_{M,2}^{*} \).

Noting

$$\begin{aligned} \left\{ {\begin{array}{l} \frac{P_{T,1}^{*} }{P_{M,1}^{*} }=\left[ {\frac{1}{2}+\left( {\frac{V_1 -F_1 +\Delta }{V_2 -F_2 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{2(V_1 -F_1 )}} \right] ^{-\frac{\phi }{1-\phi +\beta }} \\ \frac{P_{T,2}^{*} }{P_{M,2}^{*} }=\left[ {\frac{1}{2}+\left( {\frac{V_2 -F_2 +\Delta }{V_1 -F_1 +\Delta }} \right) ^{\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{2(V_2 -F_2 )}} \right] ^{-\frac{\phi }{1-\phi +\beta }} \\ \end{array}} \right. \end{aligned}$$
(29)

one can obtain that \(P_{T,1}^{*} >P_{M,1}^{*} \) and \(P_{T,2}^{*} <P_{M,2}^{*} \). \(\square \)

Proof of Proposition 2

The difference of expected benefits of the more attractive firm between targeted attacks and mass attacks takes the form of

$$\begin{aligned} \pi _{T,1}^{*} -\pi _{M,1}^{*}= & {} (1-P_{T,1}^{*} )(V_1 -F_1 +\Delta )-(1-P_{T,2}^{*} )\Delta -z_{T,1}^{*} \nonumber \\&-\,(1-P_{M,1}^{*} )(V_1 -F_1 +\Delta )+(1-P_{M,2}^{*} )\Delta +z_{M,1}^{*}\nonumber \\= & {} (P_{M,1}^{*} -P_{T,1}^{*} )(V_1 -F_1 +\Delta )+(P_{T,2}^{*} -P_{M,2}^{*} )\Delta +z_{M,1}^{*} -z_{T,1}^{*} \end{aligned}$$
(30)

By Proposition 1, \(P_{T,1}^{*} >P_{M,1}^{*} \), \(P_{T,2}^{*} <P_{M,2}^{*} \), \(z_{T,1}^{*} >z_{M,1}^{*} \), implying that \(\pi _{T,1}^{*} <\pi _{M,1}^{*} \).

Similarly, the difference of expected benefits of the less attractive firm between the two types of cyber attacks is

$$\begin{aligned} \pi _{T,2}^{*} -\pi _{M,2}^{*} =(P_{M,2}^{*} -P_{T,2}^{*} )(V_2 -F_2 +\Delta )+(P_{T,1}^{*} -P_{M,1}^{*} )\Delta +z_{M,2}^{*} -z_{T,2}^{*} . \end{aligned}$$
(31)

It follows from \(P_{T,2}^{*} <P_{M,2}^{*} \),\(P_{T,1}^{*} >P_{M,1}^{*} \),\(z_{T,2}^{*} <z_{M,2}^{*} \) that \(\pi _{T,2}^{*} >\pi _{M,2}^{*} \). \(\square \)

Proof of Proposition 3

It can be obtained that

$$\begin{aligned}&(P_{T,i}^{*} -P_{M,i}^{*} )a(V_i -F_i )\nonumber \\&\quad =k^{\frac{1}{1-\phi +\beta }}\phi ^{\frac{\phi }{1-\phi +\beta }}a^{\frac{1+\beta }{1-\phi +\beta }}\beta ^{-\frac{\beta }{1-\phi +\beta }} \left\{ (V_i -F_i )^{\frac{1+\beta }{1-\phi +\beta }} (V_i -F_i +\Delta )^{-\frac{\beta }{1-\phi +\beta }} \right. \nonumber \\&\qquad -\,(V_i -F_i )(V_i -F_i +\Delta )^{-\frac{\beta }{1+\beta }}\nonumber \\&\qquad \left. \left[ {(V_1 -F_1 +\Delta )^{-\frac{\beta }{1+\beta }} \frac{V_1 -F_1 }{2}+(V_2 -F_2 +\Delta )^{-\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{2}} \right] ^{\frac{\phi }{1-\phi +\beta }} \right\} \end{aligned}$$

Hence,

$$\begin{aligned}&(P_{T,1}^{*} -P_{M,1}^{*} )a(V_1 -F_1 )+(P_{T,2}^{*} -P_{M,2}^{*} )a(V_2 -F_2 )=k^{\frac{1}{1-\phi +\beta }}a^{\frac{1+\beta }{1-\phi +\beta }}\beta ^{-\frac{\beta }{1-\phi +\beta }}\phi ^{\frac{\phi }{1-\phi +\beta }} \\&\quad \left\{ {(V_1 -F_1 )^{\frac{1+\beta }{1-\phi +\beta }}(V_1 -F_1 +\Delta )^{-\frac{\beta }{1-\phi +\beta }}+(V_2 -F_2 )^{\frac{1+\beta }{1-\phi +\beta }}(V_2 -F_2 +\Delta )^{-\frac{\beta }{1-\phi +\beta }}} \right. \\&\quad \left. {-\,2\left[ {(V_1 -F_1 +\Delta )^{-\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{2}+(V_2 -F_2 +\Delta )^{-\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{2}} \right] ^{\frac{1+\beta }{1-\phi +\beta }}} \right\} . \end{aligned}$$

Meanwhile,

$$\begin{aligned} c_M^{*} -c_{T,i}^{*}= & {} k^{\frac{1}{1-\phi +\beta }} a^{\frac{1+\beta }{1-\phi +\beta }}\beta ^{-\frac{\beta }{1-\phi +\beta }} \phi ^{\frac{1+\beta }{1-\phi +\beta }} \\&\times \left\{ \left[ {(V_1 -F_1 +\Delta )^{-\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{2}+(V_2 -F_2 +\Delta )^{-\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{2}} \right] ^{\frac{1+\beta }{1-\phi +\beta }}\right. \\&\left. -\,(V_i -F_i )^{\frac{1+\beta }{1-\phi +\beta }} (V_i -F_i +\Delta )^{-\frac{\beta }{1-\phi +\beta }} \right\} \end{aligned}$$

and further

$$\begin{aligned}&c_M^{*} -c_{T,1}^{*} +c_M^{*} -c_{T,2}^{*}\\&\quad =k^{\frac{1}{1-\phi +\beta }} a^{\frac{1+\beta }{1-\phi +\beta }}\beta ^{-\frac{\beta }{1-\phi +\beta }} \phi ^{\frac{1+\beta }{1-\phi +\beta }} \\&\qquad \times \left\{ {2\left[ {(V_1 -F_1 +\Delta )^{-\frac{\beta }{1+\beta }} \frac{V_1 -F_1 }{2}+(V_2 -F_2 +\Delta )^{-\frac{\beta }{1+\beta }} \frac{V_2 -F_2 }{2}} \right] ^{\frac{1+\beta }{1-\phi +\beta }}} \right. \\&\qquad \left. -(V_1 -F_1 )^{\frac{1+\beta }{1-\phi +\beta }} (V_1 -F_1 +\Delta )^{-\frac{\beta }{1-\phi +\beta }}-(V_2 -F_2 ) ^{\frac{1+\beta }{1-\phi +\beta }} (V_2 -F_2 +\Delta )^{-\frac{\beta }{1-\phi +\beta }} \right\} . \end{aligned}$$

Finally, the difference of expected benefits of the hacker under targeted attacks and mass attacks is

$$\begin{aligned} H_T^{*} -H_M^{*}= & {} (P_{T,1}^{*} -P_{M,1}^{*} )a(V_1 -F_1 )-(c_{T,1}^{*} -c_M^{*} )\\&+\,(P_{T,2}^{*} -P_{M,2}^{*} )a(V_2 -F_2 )-(c_{T,2}^{*} -c_M^{*} ) \\= & {} k^{\frac{1}{1-\phi +\beta }}a^{\frac{1+\beta }{1-\phi +\beta }}\beta ^{-\frac{\beta }{1-\phi +\beta }}\left( {\phi ^{\frac{\phi }{1-\phi +\beta }}-\phi ^{\frac{1+\beta }{1-\phi +\beta }}} \right) \\&\times \left\{ {(V_1 -F_1 )^{\frac{1+\beta }{1-\phi +\beta }}(V_1 -F_1 +\Delta )^{-\frac{\beta }{1-\phi +\beta }}+(V_2 -F_2 )^{\frac{1+\beta }{1-\phi +\beta }}(V_2 -F_2 +\Delta )^{-\frac{\beta }{1-\phi +\beta }}} \right. \\&\left. {-\,2\left[ {(V_1 -F_1 +\Delta )^{-\frac{\beta }{1+\beta }}\frac{V_1 -F_1 }{2}+(V_2 -F_2 +\Delta )^{-\frac{\beta }{1+\beta }}\frac{V_2 -F_2 }{2}} \right] ^{\frac{1+\beta }{1-\phi +\beta }}} \right\} \\= & {} k^{\frac{1}{1-\phi +\beta }}a^{\frac{1+\beta }{1-\phi +\beta }}\beta ^{-\frac{\beta }{1-\phi +\beta }}\left( {\phi ^{\frac{\phi }{1-\phi +\beta }}-\phi ^{\frac{1+\beta }{1-\phi +\beta }}} \right) \\&\times \left\{ {\left[ {(V_1 -F_1 )(V_1 -F_1 +\Delta )^{-\frac{\beta }{1+\beta }}} \right] ^{\frac{1+\beta }{1-\phi +\beta }}+ \left[ {(V_2 -F_2 )(V_2 -F_2 +\Delta )^{-\frac{\beta }{1+\beta }}} \right] ^{\frac{1+\beta }{1-\phi +\beta }}} \right. \\&\left. -\,2\left[ {\frac{V_1 -F_1 }{2}(V_1 -F_1 +\Delta ) ^{-\frac{\beta }{1+\beta }}+\frac{V_2 -F_2 }{2}(V_2 -F_2 +\Delta ) ^{-\frac{\beta }{1+\beta }}} \right] ^{\frac{1+\beta }{1-\phi +\beta }} \right\} \\:= & {} k^{\frac{1}{1-\phi +\beta }}a^{\frac{1+\beta }{1-\phi +\beta }}\beta ^{-\frac{\beta }{1-\phi +\beta }}\left( {\phi ^{\frac{\phi }{1-\phi +\beta }}-\phi ^{\frac{1+\beta }{1-\phi +\beta }}} \right) \Omega \left( {(V_1 -F_1 )(V_1 -F_1 +\Delta )^{-\frac{\beta }{1+\beta }}} \right) \end{aligned}$$

where \(\Omega \left( {(V_1 -F_1 )(V_1 -F_1 +\Delta )^{-\frac{\beta }{1+\beta }}} \right) \) is a function of \(\omega =(V_1 -F_1 )(V_1 -F_1 +\Delta )^{-\frac{\beta }{1+\beta }}\).

Denoting \(\nu =(V_2 -F_2 )(V_2 -F_2 +\Delta )^{-\frac{\beta }{1+\beta }}\), we are able to obtain

$$\begin{aligned} \Omega (\omega )=\omega ^{\frac{1+\beta }{1-\phi +\beta }}-\,2\left( {\frac{\omega }{2}+\frac{\nu }{2}} \right) ^{\frac{1+\beta }{1-\phi +\beta }}+\nu ^{\frac{1+\beta }{1-\phi +\beta }} \end{aligned}$$
(32)

where \(\omega >\nu \).

The derivative of \(\Omega (\omega )\) over \(\omega \) takes the form of

$$\begin{aligned} {\Omega }'(\omega )=\frac{1+\beta }{1-\phi +\beta }\left[ {\omega ^{\frac{\phi }{1-\phi +\beta }}-\left( {\frac{\omega }{2}+\frac{\nu }{2}} \right) ^{\frac{\phi }{1-\phi +\beta }}} \right] . \end{aligned}$$
(33)

Hence, one can find \({\Omega }'(\omega )>0\), implying that \(\Omega (\omega )>\Omega (\nu )=0\) and further \(H_T^{*} -H_M^{*} >0\). \(\square \)

Proof of Proposition 4

Under targeted attacks, the first-order conditions of the firms and the hacker with mandatory security requirements are

$$\begin{aligned} \frac{\partial \pi _i }{\partial z_i } =\beta kc_i^\phi z_i ^{-\beta -1}(V_i -F_i +\Delta )-1 \quad \hbox {s.t.}\quad P_i =kc_i^\phi z_i ^{-\beta }\le \textit{PR}_i \end{aligned}$$
(34)

and Eq. (19). Solving Eq. (19) yields

$$\begin{aligned} c_i =[\phi ka(V_i -F_i )]^{\frac{1}{1-\phi }}z_i^{-\frac{\beta }{1-\phi }} \end{aligned}$$
(35)

which imply the first-order conditions for the two firms

$$\begin{aligned} \left\{ \begin{array}{l} \frac{\partial \pi _1 }{\partial z_1 }=\beta k^{\frac{1}{1-\phi }}[\phi a(V_1 -F_1 )]^{\frac{\phi }{1-\phi }}z_1^{-\frac{1-\phi +\beta }{1-\phi }} (V_1 -F_1 +\Delta )-1 \quad \hbox {s.t.}\quad P_1 \\ \quad =k^{\frac{1}{1-\phi }}\left[ {\phi a(V_1 -F_1 )} \right] ^{\frac{\phi }{1-\phi }}z_1^{-\frac{\beta }{1-\phi }} \le PR_1 \\ \frac{\partial \pi _2 }{\partial z_2 }=\beta k^{\frac{1}{1-\phi }}[\phi a(V_2 -F_2 )]^{\frac{\phi }{1-\phi }}z_2^{-\frac{1-\phi +\beta }{1-\phi }} (V_2 -F_2 +\Delta )-1 \quad \hbox {s.t.}\quad P_2 \\ \quad =k^{\frac{1}{1-\phi }}\left[ {\phi a(V_2 -F_2 )} \right] ^{\frac{\phi }{1-\phi }}z_2^{-\frac{\beta }{1-\phi }} \le PR_2 \\ \end{array} \right. \end{aligned}$$
(36)

We are now in a position to derive the equilibrium strategies of the two firms (and further the equilibrium strategy of the hacker) in the following four scenarios.

  1. (a)

    In case of \({ PR}_1 \ge P_{T,1}^{*} ,{ PR}_2 \ge P_{T,2}^{*} \), the equilibrium strategies for the two firms are not affected by security requirements and thus remains unchanged, as given by Eq. (3).

  2. (b)

    In case of \({ PR}_1 \ge P_{T,1}^{*} ,{ PR}_2 <P_{T,2}^{*} \), it can be observed that the equilibrium strategy for firm 1 remains unchanged since the optimization problems of both firms are independent of each other. In contrast, the equilibrium strategy for firm 2 can be obtained by solving \(k^{\frac{1}{1-\phi }}[\phi a(V_2 -F_2 )]^{\frac{\phi }{1-\phi }}z_2^{-\frac{\beta }{1-\phi }} ={ PR}_2 \), that is,

    $$\begin{aligned} \hat{{z}}_{T,2}^{*} =k^{\frac{1}{\beta }}[\phi a(V_2 -F_2 )]^{\frac{\phi }{\beta }}{ PR}_2^{-\frac{1-\phi }{\beta }} , \quad \hat{{c}}_{T,2}^{*} =\phi a(V_2 -F_2 )PR_2 , \quad \hat{{P}}_{T,2}^{*} ={ PR}_2 .\quad \end{aligned}$$
    (37)

    The first-order condition of firm 2 holds since

    $$\begin{aligned} \left. {{\left. {{\partial \pi _2 }/{\partial z_2 }} \right| _{z_2 =\hat{{z}}_{T,2}^{*} } <\partial \pi _2 }/{\partial z_2 }} \right| _{z_2 =z_{T,2}^{*} } =0. \end{aligned}$$
  3. (c)

    In case of \({ PR}_1 <P_{T,1}^{*} ,{ PR}_2 \ge P_{T,2}^{*} \), we can similarly find that the equilibrium strategy for firm 2 remains unchanged while the equilibrium strategy for firm 1 takes the form of

    $$\begin{aligned} \hat{{z}}_{T,1}^{*} =k^{\frac{1}{\beta }}[\phi a(V_1 -F_1 )]^{\frac{\phi }{\beta }}{ PR}_1^{-\frac{1-\phi }{\beta }} , \quad \hat{{c}}_{T,1}^{*} =\phi a(V_1 -F_1 ){ PR}_1 , \quad \hat{{P}}_{T,1}^{*} ={ PR}_1 .\quad \end{aligned}$$
    (38)
  4. (d)

    In case of \(PR_1 <P_{T,1}^{*} ,{ PR}_2 <P_{T,2}^{*} \), the equilibrium strategies for both firms are given by Eqs. (37) and (38).

\(\square \)

Proof of Proposition 5

Under mass attacks, the first-order conditions for the two firms and the hacker are

$$\begin{aligned} \frac{\partial \pi _i }{\partial z_i }=\beta kc^{\phi }z_i ^{-\beta -1}(V_i -F_i +\Delta )-1 \quad \hbox {s.t.}\quad P_i =kc^{\phi }z_i ^{-\beta }\le { PR}_i \end{aligned}$$
(39)

and equitation (21). Solving Eq. (21) yields

$$\begin{aligned} c=\left( {0.5\phi ka} \right) ^{\frac{1}{1-\phi }}[z_1 ^{-\beta }(V_1 -F_1 ) +z_2 ^{-\beta }(V_2 -F_2 )]^{\frac{1}{1-\phi }}. \end{aligned}$$
(40)

One can get for the two firms

$$\begin{aligned} \frac{\partial \pi _1 }{\partial z_1 }=\beta k^{\frac{1}{1-\phi }}\left[ {0.5\phi a\left( {z_1 ^{-\beta }(V_1 -F_1 )+z_2 ^{-\beta }(V_2 -F_2 )} \right) } \right] ^{\frac{\phi }{1-\phi }}z_1 ^{-\beta -1}(V_1 -F_1 +\Delta )-1\qquad \end{aligned}$$
(41)
$$\begin{aligned} \hbox {s.t.}\quad P_1 \,=k^{\frac{1}{1-\phi }}\left[ {0.5\phi a\left( {z_1 ^{-\beta }(V_1 -F_1 )+z_2 ^{-\beta }(V_2 -F_2 )} \right) } \right] ^{\frac{\phi }{1-\phi }}z_1 ^{-\beta }\le { PR}_1 \qquad \end{aligned}$$
(42)
$$\begin{aligned} \frac{\partial \pi _2 }{\partial z_2 }=\beta k^{\frac{1}{1-\phi }}\left[ {0.5\phi a\left( {z_1 ^{-\beta }(V_1 -F_1 )+z_2 ^{-\beta }(V_2 -F_2 )} \right) } \right] ^{\frac{\phi }{1-\phi }}z_2 ^{-\beta -1}(V_2 -F_2 +\Delta )-1\qquad \end{aligned}$$
(43)
$$\begin{aligned} \hbox {s.t.}\quad P_2 \,=k^{\frac{1}{1-\phi }}\left[ {0.5\phi a\left( {z_1 ^{-\beta }(V_1 -F_1 )+z_2 ^{-\beta }(V_2 -F_2 )} \right) } \right] ^{\frac{\phi }{1-\phi }}z_2 ^{-\beta }\le { PR}_2 \qquad \end{aligned}$$
(44)

We now derive the equilibrium strategies for the two firms (and further the equilibrium strategy of the hacker) in the following four scenarios.

  1. (a)

    In case of \({ PR}_1 \ge P_{M,1}^{*} ,{ PR}_2 \ge P_{M,2}^{*} \), the equilibrium strategies for the two firms remains unchanged, as given by Eq. (7).

  2. (b)

    In case of \({ PR}_1 \ge P_{M,1}^{*} ,{ PR}_2 <P_{M,2}^{*} \), in order to prove that the equilibrium strategies for firm 1 and firm 2 are given by Eqs. (10) and (13), we must show that: (1) Equation (42) holds and (2) the first-order condition of Eq. (43) holds. Denote the solutions of Eqs. (10) and (13) by \(\hat{{z}}_{M,1}^{*} \) and \(\hat{{z}}_{M,2}^{*} \). By Eq. (10), we can obtain

    $$\begin{aligned} z_2 ^{-\beta }=\frac{1}{V_2 -F_2 }\left\{ {z_1^{\frac{(1+\beta )(1-\phi )}{\phi }} [\beta (V_1 -F_1 +\Delta )]^{-\frac{1-\phi }{\phi }}(0.5\phi a)^{-1}k^{-\frac{1}{\phi }}-z_1 ^{-\beta }(V_1 -F_1 )} \right\} ,\quad \end{aligned}$$
    (45)

    which strictly increases with \(z_1 \). Hence, the best response function \(z_1 =R_1 (z_2 )\) exists and decreases with \(z_2 \). Hence, the security breach probability

    $$\begin{aligned} P_2= & {} \frac{z_1^{1+\beta } }{\beta (V_2 -F_2 )(V_1 -F_1 +\Delta )}\nonumber \\&\left\{ {z_1^{\frac{(1+\beta )(1-\phi )}{\phi }} [\beta (V_1 -F_1 +\Delta )]^{-\frac{1-\phi }{\phi }}(0.5\phi a)^{-1}k^{-\frac{1}{\phi }}-z_1 ^{-\beta }(V_1 -F_1 )} \right\} \end{aligned}$$
    (46)

    increases with \(z_1 \) and thus decreases with \(z_2 \), which implies that \(\hat{{z}}_{M,2}^{*} >z_{M,2}^{*} \) since \(P={ PR}_2 <P_{M,2}^{*} \). Noting that

    $$\begin{aligned} \frac{\partial \pi _2 }{\partial z_2 }= & {} \beta P_2 z_2 ^{-1}(V_2 -F_2 +\Delta )-1 \nonumber \\= & {} \frac{V_2 -F_2 +\Delta }{(V_2 -F_2 )(V_1 -F_1 +\Delta )}z_1^{1+\beta }\nonumber \\&\left\{ {z_1^{\frac{(1+\beta )(1-\phi )}{\phi }} [\beta (V_1 -F_1 +\Delta )]^{-\frac{1-\phi }{\phi }}(0.5\phi a)^{-1}k^{-\frac{1}{\phi }}-z_1 ^{-\beta }(V_1 -F_1 )} \right\} z_2 ^{-1}-1\nonumber \\ \end{aligned}$$
    (47)

    strictly decreases with \(z_2 \), one can obtain \(\left. {{\partial \pi _2 }/{\partial z_2 }} \right| _{z_2 =\hat{{z}}_{M,2}^{*} } <\left. {{\partial \pi _2 }/{\partial z_2 }} \right| _{z_2 =z_{M,2}^{*} } =0\), which implies that condition (ii) holds. It follows that \(\hat{{z}}_{M,1}^{*} <z_{M,1}^{*} \) from \(\hat{{z}}_{M,2}^{*} >z_{M,2}^{*} \). Substituting Eq. (10) yields

    $$\begin{aligned} P_1 =[\beta (V_1 -F_1 +\Delta )]^{-1}\hat{{z}}_{M,1}^{*} <[\beta (V_1 -F_1 +\Delta )]^{-1}z_{M,1}^{*} \le { PR}_1 , \end{aligned}$$
    (48)

    and therefore condition (i) also holds.

  3. (c)

    In case of \({ PR}_1 <P_{M,1}^{*} \) and \({ PR}_2 \ge P_{M,2}^{*} \), in a similar fashion we can prove that the equilibrium strategies for firm 1 and firm 2 satisfy Eqs. (11) and (12).

  4. (d)

    In case of \({ PR}_1 <P_{M,1}^{*} \) and \({ PR}_2 <P_{M,2}^{*} \), after excluding other three situations discussed above, we can prove that the equilibrium strategies for both firms are given by Eqs. (11) and (13), namely,

    $$\begin{aligned} \left\{ {\begin{array}{l} \hat{{z}}_{M,1}^{*} =k^{\frac{1}{\beta }}(0.5\phi a)^{\frac{\phi }{\beta }}[{ PR}_1 (V_1 -F_1 )+{ PR}_2 (V_2 -F_2 )]^{\frac{\phi }{\beta }}{ PR}_1^{-\frac{1}{\beta }} \\ \hat{{z}}_{M,2}^{*} =k^{\frac{1}{\beta }}(0.5\phi a)^{\frac{\phi }{\beta }}[{ PR}_1 (V_1 -F_1 )+PR_2 (V_2 -F_2 )]^{\frac{\phi }{\beta }}PR_2^{-\frac{1}{\beta }} \\ \end{array}} \right. . \end{aligned}$$

\(\square \)

Proof of Proposition 6

It follows from Propositions 4 and 5 that

$$\begin{aligned} \left\{ {\begin{array}{l} \frac{\hat{{z}}_{T,1}^{*} }{\hat{{z}}_{M,1}^{*} }=\left[ {\frac{2(V_1 -F_1 )PR_1 }{(V_1 -F_1 )PR_1 +(V_2 -F_2 )PR_2 }} \right] ^{\frac{\phi }{\beta }} \\ \frac{\hat{{z}}_{T,2}^{*} }{\hat{{z}}_{M,2}^{*} }=\left[ {\frac{2(V_2 -F_2 )PR_2 }{(V_1 -F_1 )PR_1 +(V_2 -F_2 )PR_2 }} \right] ^{\frac{\phi }{\beta }} \\ \end{array}} \right. \end{aligned}$$
(49)

and

$$\begin{aligned} \left\{ { \begin{array}{l} \frac{\hat{{c}}_{T,1}^{*} }{\hat{{c}}_M^{*} }=\frac{2(V_1 -F_1 )PR_1 }{(V_1 -F_1 )PR_1 +(V_2 -F_2 )PR_2 } \\ \frac{\hat{{c}}_{T,2}^{*} }{\hat{{c}}_M^{*} }=\frac{2(V_2 -F_2 )PR_2 }{(V_1 -F_1 )PR_1 +(V_2 -F_2 )PR_2 } \\ \end{array}} \right. . \end{aligned}$$
(50)

Therefore, \(\hat{{z}}_{T,1}^{*} >\hat{{z}}_{M,1}^{*} \), \(\hat{{z}}_{T,2}^{*} <\hat{{z}}_{M,2}^{*} \), \(\hat{{c}}_{T,1}^{*} >\hat{{c}}_M^{*} >\hat{{c}}_{T,2}^{*} \) if \((V_1 -F_1 )PR_1 >(V_2 -F_2 )PR_2 \) and \(\hat{{z}}_{T,1}^{*} <\hat{{z}}_{M,1}^{*} \), \(\hat{{z}}_{T,2}^{*} >\hat{{z}}_{M,2}^{*} \), \(\hat{{c}}_{T,1}^{*} <\hat{{c}}_M^{*} <\hat{{c}}_{T,2}^{*} \) if \((V_1 -F_1 )PR_1 <(V_2 -F_2 )PR_2 \).

Because \(\hat{{P}}_{T,1}^{*} =\hat{{P}}_{M,1}^{*} =PR_1 \) and \(\hat{{P}}_{T,2}^{*} =\hat{{P}}_{M,2}^{*} =PR_2 \), the difference of expected benefits of the more attractive firm between targeted attacks and mass attacks is

$$\begin{aligned} \hat{{\pi }}_{T,1}^{*} -\hat{{\pi }}_{M,1}^{*}= & {} (\hat{{P}}_{M,1}^{*} -\hat{{P}}_{T,1}^{*} )(V_1 -F_1 +\Delta )\\&+\,(\hat{{P}}_{T,2}^{*} -\hat{{P}}_{M,2}^{*} )\Delta +\hat{{z}}_{M,1}^{*} -\hat{{z}}_{T,1}^{*} =\hat{{z}}_{M,1}^{*} -\hat{{z}}_{T,1}^{*}\\ \hbox {and}\qquad \qquad \qquad \qquad \hat{{\pi }}_{T,2}^{*} -\hat{{\pi }}_{M,2}^{*}= & {} \hat{{z}}_{M,2}^{*} -\hat{{z}}_{T,2}^{*} \end{aligned}$$

implying \(\hat{{\pi }}_{T,1}^{*} >\hat{{\pi }}_{M,1}^{*} \) and \(\hat{{\pi }}_{T,2}^{*} <\hat{{\pi }}_{M,2}^{*} \) if and only if \((V_1 -F_1 )PR_1 <(V_2 -F_2 )PR_2 \). The difference of the expected benefits of the hacker under targeted attacks and mass attacks is

$$\begin{aligned} \hat{{H}}_T^{*} -\hat{{H}}_M^{*}= & {} (\hat{{P}}_{T,1}^{*} -\hat{{P}}_{M,1}^{*} )a(V_1 -F_1 ) -(\hat{{c}}_{T,1}^{*} -\hat{{c}}_M^{*} )\nonumber \\&+\,(\hat{{P}}_{T,2}^{*} -\hat{{P}}_{M,2}^{*} )a(V_2 -F_2 )-(\hat{{c}}_{T,2}^{*} -\hat{{c}}_M^{*} ) \nonumber \\= & {} 2\hat{{c}}_M^{*} -\hat{{c}}_{T,1}^{*} -\hat{{c}}_{T,2}^{*} \nonumber \\= & {} 0 \end{aligned}$$
(51)

which implies that the expected benefits of the hacker under the two types of cyber attacks are equal. \(\square \)

Proof of Proposition 7

The expected benefits of the two firms with different security requirements can be summed in Table 2 after some calculations,

Table 2 Expected benefits of the two firms with different security requirements

where

$$\begin{aligned} \left\{ {\begin{array}{l} \pi _{T,1}^{LL} =(1-P_{T,1}^{*} )(V_1 -F_1 +\Delta )-k^{\frac{1}{\beta }}[\phi a(V_1 -F_1 )]^{\frac{\phi }{\beta }}(P_{T,1}^{*} )^{-\frac{1-\phi }{\beta }}-(1-P_{T,2}^{*} )\Delta +F_1 \\ \pi _{T,2}^{LL} =(1-P_{T,2}^{*} )(V_2 -F_2 +\Delta )-k^{\frac{1}{\beta }}[\phi a(V_2 -F_2 )]^{\frac{\phi }{\beta }}(P_{T,2}^{*} )^{-\frac{1-\phi }{\beta }}-(1-P_{T,1}^{*} )\Delta +F_2 \\ \pi _{T,1}^{HL} =(1-PR_1 )(V_1 -F_1 +\Delta )-k^{\frac{1}{\beta }}[\phi a(V_1 -F_1 )]^{\frac{\phi }{\beta }}PR_1^{-\frac{1-\phi }{\beta }} -(1-P_{T,2}^{*} )\Delta +F_1 \\ \pi _{T,2}^{HL} =(1-P_{T,2}^{*} )(V_2 -F_2 +\Delta )-k^{\frac{1}{\beta }}[\phi a(V_2 -F_2 )]^{\frac{\phi }{\beta }}(P_{T,2}^{*} )^{-\frac{1-\phi }{\beta }}-(1-PR_1 )\Delta +F_2 \\ \pi _{T,1}^{LH} =(1-P_{T,1}^{*} )(V_1 -F_1 +\Delta )-k^{\frac{1}{\beta }}[\phi a(V_1 -F_1 )]^{\frac{\phi }{\beta }}(P_{T,1}^{*} )^{-\frac{1-\phi }{\beta }}-(1-PR_2 )\Delta +F_1 \\ \pi _{T,2}^{LH} =(1-PR_2 )(V_2 -F_2 +\Delta )-k^{\frac{1}{\beta }}[\phi a(V_2 -F_2 )]^{\frac{\phi }{\beta }}PR_2^{-\frac{1-\phi }{\beta }} -(1-P_{T,1}^{*} )\Delta +F_2 \\ \pi _{T,1}^{HH} =(1-PR_1 )(V_1 -F_1 +\Delta )-k^{\frac{1}{\beta }}[\phi a(V_1 -F_1 )]^{\frac{\phi }{\beta }}PR_1^{-\frac{1-\phi }{\beta }} -(1-PR_2 )\Delta +F_1 \\ \pi _{T,2}^{HH} =(1-PR_2 )(V_2 -F_2 +\Delta )-k^{\frac{1}{\beta }}[\phi a(V_2 -F_2 )]^{\frac{\phi }{\beta }}PR_2^{-\frac{1-\phi }{\beta }} -(1-PR_1 )\Delta +F_2 \\ \end{array}} \right. \end{aligned}$$
(52)

with \(PR_1 \in (0,P_{T,1}^{*} )\) and \(PR_2 \in (0,P_{T,2}^{*} )\).

Because

$$\begin{aligned} \pi _{T,1}^{HL} -\pi _{T,1}^{LL}= & {} \pi _{T,1}^{HH} -\pi _{T,1}^{LH} \nonumber \\= & {} (P_{T,1}^{*} -PR_1 )(V_1 -F_1 +\Delta )-k^{\frac{1}{\beta }}[\phi a(V_1 -F_1 )]^{\frac{\phi }{\beta }}\nonumber \\&\left[ {PR_1^{-\frac{1-\phi }{\beta }} -(P_{T,1}^{*} )^{-\frac{1-\phi }{\beta }}} \right] :=\Theta _1 (\Delta ) , \end{aligned}$$
(53)

we can find that firm 1’s optimal strategy is to set a rigorous security requirement if and only if \(\Theta _1 (\Delta )>0\). Similarly, firm 2’s optimal strategy is to set a rigorous security requirement if and only if

$$\begin{aligned} \pi _{T,2}^{HL} -\pi _{T,2}^{LL}= & {} \pi _{T,2}^{HH} -\pi _{T,2}^{LH} \nonumber \\= & {} (P_{T,2}^{*} -PR_2 )(V_2 -F_2 +\Delta )-k^{\frac{1}{\beta }}[\phi a(V_2 -F_2 )]^{\frac{\phi }{\beta }}\nonumber \\&\left[ {PR_2^{-\frac{1-\phi }{\beta }} -(P_{T,2}^{*} )^{-\frac{1-\phi }{\beta }}} \right] :=\Theta _2 (\Delta )>0. \end{aligned}$$
(54)

Hence, both firms choose rigorous security requirements provided that Eq. (14) holds and choose loose security requirements provided that Eq. (15) holds.

Because

$$\begin{aligned} \frac{\partial \pi _{T,1}^{HH} }{\partial PR_1 }=\frac{1-\phi }{\beta }k^{\frac{1}{\beta }}[\phi a(V_1 -F_1 )]^{\frac{\phi }{\beta }}PR_1^{-\frac{1-\phi +\beta }{\beta }} -(V_1 -F_1 +\Delta ), \end{aligned}$$

firm 1’s optimal security requirement when choosing a rigorous security requirement is given by

$$\begin{aligned} PR_1^{op}= & {} (1-\phi )^{\frac{\beta }{1-\phi +\beta }}k^{\frac{1}{1-\phi +\beta }}[\phi a(V_1 -F_1 )]^{\frac{\phi }{1-\phi +\beta }}[\beta (V_1 -F_1 +\Delta )]^{-\frac{\beta }{1-\phi +\beta }}\nonumber \\= & {} (1-\phi )^{\frac{\beta }{1-\phi +\beta }}P_{T,1}^{*} <P_{T,1}^{*} \end{aligned}$$
(55)

Similarly, firm 2’s optimal security requirement when choosing a rigorous security requirement is

$$\begin{aligned} PR_2^{op} =(1-\phi )^{\frac{\beta }{1-\phi +\beta }}P_{T,2}^{*} . \end{aligned}$$
(56)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Zhong, W. Information security investment for competitive firms with hacker behavior and security requirements. Ann Oper Res 235, 277–300 (2015). https://doi.org/10.1007/s10479-015-1925-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1925-2

Keywords

Navigation