Skip to main content

Advertisement

Log in

A new concept for fuzzy variable based non-linear programming problem with application on system reliability via genetic algorithm approach

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Fuzziness is the primary and foremost perception of science and technology. This paper, for the first time, introduces a new concept on solution technique for fuzzy variable based non-linear programming problem with both decision variables and restriction being fuzzy in nature. First the problem is transformed in to a multi-objective non-linear programming problem, and then solving it by multiobjective genetic algorithm (MOGA) approach. The proposed procedure is applied on complex system reliability model to evaluate the system reliability in fuzzy environment, using MOGA by implementing new feature as refining operation. Numerical example is presented to illustrate proposed fuzzy system reliability model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baoliang, L., Lirong, C., & Yanqing, W. (2014). Interval reliability for aggregated Markov repairable system with repair time omission. Annals of Operations Research, 212(1), 169–183.

    Article  Google Scholar 

  • Baykasoglu, A., & Gocken, T. (2012). A direct solution approach to fuzzy mathematical programs with fuzzy decision variables. Expert System with Applications, 39, 1972–1978.

    Article  Google Scholar 

  • Bector, C. R., & Chandra, S. (2002). On duality in linear programming under fuzzy environment. Fuzzy Sets and System, 125(3), 317–325.

    Article  Google Scholar 

  • Bellmann, R. E., & Zadeh, L. A. (1970). Decision making in a fuzzy environment. Management Science, 17(4), 141–164.

    Article  Google Scholar 

  • Bosma, R., van den Berg, J., Kaymak, U., Udo, H., & Verreth, J. (2012). A generic methodology for developing fuzzy decision models. Expert Systems with Applications, 39(1), 1200–1210.

    Article  Google Scholar 

  • Cao, B.Y. (2004). Multi-objective linear programming model with T-fuzzy variables, Journal of Fuzzy Mathematics, 12(2), 425–432.

  • Chanas, D. (1989). Fuzzy programming in multiobjective linear programming-a parametric approach. Fuzzy Sets and Systems, 29, 303–313.

    Article  Google Scholar 

  • Chang, J. R., Chang, K. H., Liao, S. H., & Cheng, C. H. (2006). The reliability of general vague fault-tree analysis on weapon systems fault diagnosis. Soft Computing, 10(7), 531–542.

    Article  Google Scholar 

  • Chang, K. H., Cheng, C. H., & Chang, Y. C. (2010). Reprioritization of failures in a silane supply system using an intuitionistic fuzzy set ranking technique. Soft Computing, 14(3), 285–298.

    Article  Google Scholar 

  • Chatterjee, S., & Bandopadhyay, S. (2012). Reliability estimation using a genetic algorithm-based artificial neural network: An application to a load–haul–dump machine. Expert System Applications, 39(12), 10943–10951.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Durillo, J. J., Nebro, A. J., Luna, F., Coello Coello, C. A., & Alba, E. (2010). Convergence speed in multi-objective metaheuristics: Efficiency criteria and empirical study. International Journal for Numerical Methods in Engineering, 84(11), 1344–1375.

    Article  Google Scholar 

  • Garg, H., & Sharma, S. P. (2013). Multi-objective reliability-redundancy allocation problem using particle swarm optimizzation. Computers & Industrial Engineering, 64, 247–255.

    Article  Google Scholar 

  • Holland, H. J. (1975). Adaptation in natural and artificial systems. Michigan: University of Michigan.

    Google Scholar 

  • Hong, D. H. (2010). Blackwell’s theorem for T-related fuzzy variables. Informations sciences, 180, 1769–1777.

    Article  Google Scholar 

  • Hsu, F., & Fu, L. (2001). A novel adaptive fuzzy variable structure control for a class of nonlinear uncertain systems via backstepping. Fuzzy Sets and Systems, 122, 83–106.

    Article  Google Scholar 

  • Jeffrey, P. K., Steven, M. C., & Mark, E. O. (2013). Reliability of manufacturing equipment in complex environments. Annals of Operations Research, 209(1), 231–254.

    Article  Google Scholar 

  • Kaymak, U., & Sousa, J. M. C. (2001). Model predictive control using fuzzy decision functions. IEEE Transactions on Systems, Man and Cybernetics. Part B, Cybernetics, 31(1), 54–65.

    Article  Google Scholar 

  • Kaymak, U., & Sousa, J. M. C. (2003). Weighted constraint aggregation in fuzzy optimization. Constraints, 8(1), 29–46.

    Article  Google Scholar 

  • Koc, M. L., & Balas, C. E. (2013). Reliability analysis of a rubble mound breakwater using the theory of fuzzy random variables. Applied Ocean Research, 39, 83–88.

    Article  Google Scholar 

  • Lai, Y. J., & Hwang, C. L. (1992). Fuzzy mathematical programming methods and application. Berlin: Springer.

    Book  Google Scholar 

  • Li, X., Yan, R., & Zuo, M. J. (2009). Evaluating a warm standby system with components having proportional hazard rates. Operation Research Letters, 37, 56–60.

    Article  Google Scholar 

  • Lirong, C., Haijun, L., & Susan, H. X. (2014). Stochastic methods in reliability and risk management. Annals of Operations Research, 212(1), 1–2.

    Article  Google Scholar 

  • Liu, X. (2001). Measuring the satisfaction of constraints in fuzzy linear programming. Fuzzy Sets and System, 122, 263–275.

    Article  Google Scholar 

  • Mahapatra, G. S., & Roy, T. K. (2006). Fuzzy multi-objective mathematical programming on reliability optimization model. Applied Mathematics and Computation, 174(1), 643–659.

    Article  Google Scholar 

  • Mahapatra, G. S., & Roy, T. K. (2012). Reliability evaluation of bridge system with fuzzy reliability of components using interval nonlinear programming. Electronic Journal of Applied Statistical Analysis, 5(2), 151–163.

    Google Scholar 

  • Mahapatra, G. S., Mahapatra, B. S., & Roy, P. K. (2014). Network reliability evaluation for fuzzy components: An interval programming approach. Journal of Intelligent and Fuzzy Systems, 27, 743–751.

    Google Scholar 

  • Mahdavi-Amiri, N., & Nasseri, S. H. (2007). Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables. Fuzzy Sets and Systems, 158, 1961–1978.

    Article  Google Scholar 

  • Maleki, H. R., Tata, M., & Mashinchi, M. (1994). Linear programming with fuzzy variables. Fuzzy Sets and System, 66(3), 301–306.

    Article  Google Scholar 

  • Padmanabhan, D., Agarwal, H., Renaud, J. E., & Batill, S. M. (2006). A study using Monte Carlo simulation for failure probability calculation in reliability-based optimization. Optimization and Engineering, 7(3), 297–316.

    Article  Google Scholar 

  • Qin, R., Liu, Y., & Liu, Z. (2011). Methods of critical value reduction for type-2 fuzzy variables and their applications. Journal of Computational and Applied Mathematics, 235(5), 1454–1481.

    Article  Google Scholar 

  • Sakawa, M. (1993). Fuzzy Sets and Interactive multi-objective Optimization. New York: Plenum Press.

    Book  Google Scholar 

  • Satnciulescu, C., Fortemps, Ph, Installe, M., & Wertz, V. (2003). Multiobjective fuzzy linear programming problem with fuzzy decision variables. European Journal of Operational Research, 149, 654–675.

    Article  Google Scholar 

  • Schutze, O., Lara, A., & Coello Coello, C. A. (2011). On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Transactions on Evolutionary Computation, 15(4), 444–455.

    Article  Google Scholar 

  • Shaocheng, T., Jiantao, T., & Tao, W. (2000). Fuzzy adaptive control of non-linear systems. Fuzzy Sets and System, 111(2), 153–167.

    Article  Google Scholar 

  • Srinivas, N., & Deb, K. (1994). Multi-objective function optimization using nondominated sorting genetic algorithms. Evolutionary computation, 2(3), 221–248.

    Article  Google Scholar 

  • Wang, S., & Watada, J. (2011). Some properties of T-independent fuzzy variables. Mathematical and Computer Modelling, 53(5), 970–984.

    Google Scholar 

  • Wu, F., Lu, J., & Zhang, G. (2006). A new approximate algorithm for solving multiple objective linear programming problems with fuzzy parameters. Applied Mathematics and Computation, 174(1), 524–544.

    Article  Google Scholar 

  • Xiaoyan, Z., & Way, K. (2014). Importance measures in reliability and mathematical programming. Annals of Operations Research, 212(1), 241–267.

    Article  Google Scholar 

  • Xue, F., Tang, W., & Zhao, R. (2008). The expected value of a function of a fuzzy variable with a continuous membership function. Computers & Mathematics with Applications, 55(6), 1215–1224.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

  • Zhong, X., Ichchou, M., & Saidi, A. (2010). Reliability assessment of complex mechatronic systems using a modified nonparamertic belief propagation algorithm. Reliability Engineering and System Safety, 95, 1174–1185.

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the research grant supported by the Council of Scientific and Industrial Research of India under the research project 25(0191)/10/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Mahapatra.

Appendix: Definition: symmetrical triangular fuzzy number

Appendix: Definition: symmetrical triangular fuzzy number

Parametric form: A fuzzy number is a pair \((\underline{\nu },~ \overline{\nu })\) of function \(\underline{\nu }(t)\)\(\overline{\nu }(t) :~ 0\le t\le ~1\) which must satisfy the following properties:

  1. (1)

    \(\underline{\nu }(t)\) is bounded monotonic increasing left continuous function.

  2. (2)

    \(\overline{\nu }(t)\) is bounded monotonic decreasing right continuous function.

  3. (3)

    \(\underline{\nu }(t)~\le ~\overline{\nu }(t)\), \(0~\le ~t~\le ~1\).

A symmetric triangular fuzzy number \(\tilde{A}=[x_{0},~\omega ]\) center at \( x_{0}\) with basis \(2\omega \), is defined with following membership functions (Fig. 4)

$$\begin{aligned} \mu _{\tilde{A}}(x)=\left\{ \begin{array}{ll} \frac{x-x_{0}+\omega }{\omega } &{}\quad \text {for}\,x_{0}-\omega \le x\le x_{0},\\ \frac{x_{0}+\omega -x}{\omega } &{} \quad \text {for}\,x_{0}\le x\le x_{0}+\omega ,\\ \quad 0\,\, &{} \quad \text {otherwise}. \end{array} \right. \end{aligned}$$

The parametric form of the above TFN is \(\underline{\nu }(t)=x_{0}-\omega +\omega t,~\overline{\nu }(t)=x_{0}+\omega -\omega t\).

Fig. 4
figure 4

Membership function of symmetric TFN

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, G.S., Mahapatra, B.S. & Roy, P.K. A new concept for fuzzy variable based non-linear programming problem with application on system reliability via genetic algorithm approach. Ann Oper Res 247, 853–866 (2016). https://doi.org/10.1007/s10479-015-1863-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1863-z

Keywords

Navigation