Skip to main content
Log in

A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent, it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present, then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are dependent on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the single-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods on real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. It can be easily shown that taking the derivative of \(W_t-\dfrac{\alpha }{2}W_t^2\) with respect to \(W_t\) and setting it equal to zero leads to the maximum attainable wealth level at time point \(t\) which is equal to \(1/\alpha \).

References

  • Adcock, C. J. (2009). Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution. To appear in Annals of Operation Research.

  • Aït-Sahalia, Y., Cacho-Diaz, J., & Hurd, T. R. (2009). Portfolio choice with jumps: A closed-form solution. The Annals of Applied Probability, 19, 556–584.

    Article  Google Scholar 

  • Alexander, G. J., & Baptista, M. A. (2004). A comparison of VaR and CVaR constraints on portfolio selection with the mean–variance model. Management Science, 50, 1261–1273.

    Article  Google Scholar 

  • Amenguala, D., & Sentana, E. (2010). A comparison of mean–variance efficiency tests. Journal of Econometrics, 154, 16–34.

    Article  Google Scholar 

  • Bauwens, L., Laurent, S., & Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey. Journal of Applied Econometrics, 21, 79–109.

    Article  Google Scholar 

  • Basak, S., & Chabakauri, G. (2010). Dynamic mean–variance asset allocation. Review of Financial Studies, 23, 2970–3016.

    Article  Google Scholar 

  • Bodnar, O. (2009). Sequential surveillance of the tangency portfolio weights. International Journal of Theoretical and Applied Finance, 12, 797–810.

    Article  Google Scholar 

  • Bodnar, T., & Schmid, W. (2008). Estimation of optimal portfolio compositions for Gaussian returns. Statistics & Decisions, 26, 179–201.

    Google Scholar 

  • Bodnar, T., & Schmid, W. (2009). Econometrical analysis of the sample efficient frontier. The European Journal of Finance, 15, 317–335.

    Article  Google Scholar 

  • Bollerslev, T., Engle, R. F., & Wooldridge, J. (1988). A capital asset pricing model with time varying covariances. Journal of Political Economy, 96, 116–131.

    Article  Google Scholar 

  • Brandt, M. (2010). Portfolio choice problems. In: Aït-Sahalia, Y., & Hansen, L. P. (eds.) Handbook of financial econometrics, forthcoming.

  • Brandt, M. W., Goyal, A., Santa-Clara, P., & Stroud, J. R. (2005). A simulation approach to dynamic portfolio choice with an application to learning about return predictability. Review of Financial Studies, 18, 831–873.

    Article  Google Scholar 

  • Brandt, M., & Santa-Clara, P. (2006). Dynamic portfolio selection by augmenting the asset space. The Journal of Finance, 61, 2187–2217.

    Article  Google Scholar 

  • Britten-Jones, M. (1999). The sampling error in estimates of mean–variance efficient portfolio weights. Journal of Finance, 54, 655–671.

    Article  Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods. New York: Springer.

    Book  Google Scholar 

  • Campbell, J. Y., & Viceira, L. M. (2002). Strategic asset allocation: Portfolio choice for long-term investors. New York: Oxford University Press.

    Book  Google Scholar 

  • Çanakoğlu, E., & Özekici, S. (2009). Portfolio selection in stochastic markets with exponential utility functions. Annals of Operations Research, 166, 281–297.

    Article  Google Scholar 

  • Çelikyurt, U., & Özekici, S. (2007). Multiperiod portfolio optimization models in stochastic markets using the mean–variance approach. European Journal of Operational Research, 179, 186–202.

    Article  Google Scholar 

  • Dantzig, G. B., & Infanger, G. (1993). Multi-stage stochastic linear programs for portfolio optimization. Annals of Operations Research, 45, 59–76.

    Article  Google Scholar 

  • Duffie, D., & Richardson, H. (1991). Mean–variance hedging in continuous time. Annals of Probability, 1, 1–15.

    Article  Google Scholar 

  • Edirisinghe, N. C. P., & Patterson, E. I. (2006). Multi-period stochastic portfolio optimization: Block-separable decomposition. Annals of Operations Research, 152, 367–394.

    Article  Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987–1008.

    Article  Google Scholar 

  • Engle, R. F. (2002). Dynamic conditional correlation—A simple class of multivariate GARCH models. Journal of Business and Economic Statistics, 20, 339–350.

    Article  Google Scholar 

  • Frahm, G., & Memmel, C. (2010). Dominating estimators for minimum-variance portfolios. Journal of Econometrics, 159, 289–302.

    Article  Google Scholar 

  • Gibbons, M. R., Ross, S. A., & Shanken, J. (1989). A test of the efficiency of a given portfolio. Econometrica, 57, 1121–1152.

    Article  Google Scholar 

  • Golosnoy, V., & Schmid, W. (2007). EWMA control charts for monitoring optimal portfolio weights. Sequential Analysis, 26, 195–224.

    Article  Google Scholar 

  • Ingersoll, J. E. (1987). Theory of financial decision making. New York: Rowman & Littlefield Publishers.

    Google Scholar 

  • Jondeau, E., & Rockinger, M. (2006). Optimal portfolio allocation under higher moments. European Financial Management, 12, 29–55.

    Article  Google Scholar 

  • Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21, 293–305.

    Article  Google Scholar 

  • Harvey, C. R., Leichty, J. C., Leichty, M. W., & Muller, P. (2010). Portfolio selection with higher moments. Quantitative Finance, 10, 469–485.

    Article  Google Scholar 

  • Harville, D. A. (1997). Matrix algebra from a statistician’s perspective. New York: Springer.

    Book  Google Scholar 

  • Kilianová, S., & Pflug, G Ch. (2009). Optimal pension fund management under multi-period risk minimization. Annals of Operations Research, 166, 261–270.

    Article  Google Scholar 

  • Köksalan, M., & Şakar, C. T. (2014). An interactive approach to stochastic programming-based portfolio optimization, To appear in Annals of Operations Research.

  • Konno, H., Pliska, S. R., & Suzuki, K.-I. (1993). Optimal portfolios with asymptotic criteria. Annals of Operations Research, 45, 187–204.

    Article  Google Scholar 

  • Leippold, M., Vanini, P., & Trojani, F. (2004). A geometric approach to multiperiod mean–variance optimization of assets and liabilities. Journal of Economic Dynamics and Control, 28, 1079–1113.

    Article  Google Scholar 

  • Li, D., & Ng, W. L. (2000). Optimal dynamic portfolio selection: Multiperiod mean–variance formulation. Mathematical Finance, 10, 387–406.

    Article  Google Scholar 

  • Mansini, R., Ogryczak, W., & Speranza, M. G. (2007). Conditional value at risk and related linear programming models for portfolio optimization. Annals of Operations Research, 152, 227–256.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7, 77–91.

    Google Scholar 

  • Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New York: Wiley.

    Google Scholar 

  • Marzban, S., Mahootchi, M., & Khamseh, A. A. (2013). Developing a multi-period robust optimization model considering American style options, To appear in Annals of Operations Research.

  • Merton, R. C., & Samuelson, P. A. (1974). Fallacy of the log-normal approximation to optimal portfolio decision-making over many periods. Journal of Financial Economics, 1, 67–94.

    Article  Google Scholar 

  • Mossin, J. (1968). Optimal multiperiod portfolio policies. The Journal of Business, 41, 215–229.

    Article  Google Scholar 

  • Mencía, J., & Sentana, E. (2009). Multivariate location-scale mixtures of normals and mean–variance–skewness portfolio allocation. Journal of Econometrics, 153, 105–121.

    Article  Google Scholar 

  • Okhrin, Y., & Schmid, W. (2006). Distributional properties of portfolio weights. Journal of Econometrics, 134, 235–256.

    Article  Google Scholar 

  • Pennacchi, G. (2008). Theory of asset pricing. Boston: Pearson/Addison-Wesley.

    Google Scholar 

  • Samuelson, P. A. (1969). Lifetime portfolio selection by dynamic stochastic programming. Review of Economic Studies, 51, 239–246.

    Google Scholar 

  • Shi, J., Katehakis, M. N., & Melamed, B. (2013). Martingale methods for pricing inventory penalties under continuous replenishment and compound renewal demands. Annals of Operations Research, 208, 593–612.

    Article  Google Scholar 

  • Skaf, J., & Boyd, S. (2009). Multi-period portfolio optimization with constraints and transaction costs. Stanford working paper.

  • Steinbach, M. C. (2001). Markowitz revisited: Mean–variance models in financial portfolio analysis. Society for Industrial and Applied Mathematics Review, 43, 31–85.

    Google Scholar 

  • Tobin, J. (1958). Liquidity preference as behavior towards risk. Review of Economic Studies, 25, 65–86.

    Article  Google Scholar 

  • van Binsbergen, J. H., & Brandt, M. (2007). Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? Computational Economics, 29, 355–367.

    Article  Google Scholar 

  • Wang, Z. (2005). A shrinkage approach to model uncertainty and asset allocation. Review of Financial Studies, 18, 673–705.

    Article  Google Scholar 

  • Yan, W., & Li, S. (2008). A class of portfolio selection with a four-factor futures price model. Annals of Operations Research, 164, 139–165.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Professor Endre Boros, the Associate Editor, and an anonymous Reviewer for careful reading of the paper and for their suggestions which have improved an earlier version of this paper. The first and the third author appreciates the financial support of the German Science Foundation (DFG) via the projects BO 3521/3-1 and SCHM 859/13-1 ”Bayesian Estimation of the Multi-Period Optimal Portfolio Weights and Risk Measures”. We also thank David Bauder for his comments used in the preparation of the revised version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taras Bodnar.

Appendix

Appendix

In this section the proofs of the theorems are given.

Proof of Theorem 1

First, we note that the expression of the optimal weights at period \(T-1\) is given in (11). The rest of the proof is done by using the mathematical induction on the expressions of the portfolio weights and the value function. Let

$$\begin{aligned} \varvec{A}_{i}=E_{i-1}[V_{i+1}\tilde{\mathbf {X}}_{i}\tilde{\mathbf {X}}^\prime _{i}] \quad \text {for}\quad i=1,\ldots ,T-1\quad \text {and}\quad A_T=\varvec{\varSigma }_T+\tilde{\varvec{\mu }}_T\tilde{\varvec{\mu }}_T^\prime . \end{aligned}$$
(51)

Moreover, let

$$\begin{aligned} \tilde{\varvec{\mu }}^{*}_{i}= \left\{ \begin{array}{ll} \tilde{\varvec{\mu }}_{T} &{}\quad \text {for}\quad i=T\\ E_{i-1}\left[ R_{i+1}\tilde{\mathbf {X}}_{i}\right] &{} \quad \text {for}\quad i=1,\ldots ,T-1, \end{array} \right. \end{aligned}$$
(52)

\(R_{i}=\frac{\mathbf {1}^{\prime }\varvec{A}_{i}^{-1}\tilde{\varvec{\mu }}^*_i}{\mathbf {1}^{\prime }\varvec{A}^{-1}_i\mathbf {1}}\), \(V_{i}=\frac{1}{\mathbf {1}^{\prime }\varvec{A}^{-1}_i\mathbf {1}}\) and \(\tilde{s}_i=\tilde{\varvec{\mu }}_i^{*\;\prime } \tilde{\mathbf {Q}}_i\tilde{\varvec{\mu }}^*_i\) with

$$\begin{aligned} \tilde{\mathbf {Q}}_i=\varvec{A}^{-1}_{i}-\frac{\varvec{A}^{-1}_{i}\mathbf {1}\mathbf {1}^{\prime } \varvec{A}^{-1}_{i}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{i}\mathbf {1}} \quad \text {for} \quad i=1,\ldots ,T-1. \end{aligned}$$

Note, that

$$\begin{aligned} \mathbf {1}^{\prime }\tilde{\mathbf {Q}}_{i}=\mathbf {0}^{\prime },\quad \tilde{\mathbf {Q}}_{i}\mathbf {1}=\mathbf {0},\quad \tilde{\mathbf {Q}}_{i}\varvec{A}_{i}\tilde{\mathbf {Q}}_{i}=\tilde{\mathbf {Q}}_{i}. \end{aligned}$$

Let \(\mathbf {w}^{*\;\prime }_{T-1}\) be the optimal portfolio weights calculated for period \(T-1\) given in (11). First, we calculate the value function for period \(T-2\). It holds that

$$\begin{aligned}&V(T-2,W_{T-2},\mathcal {F}_{T-2})\\&\quad =\max \limits _{\mathbf {w}_{T-2}:\mathbf {w}^{\prime }_{T-2}\mathbf {1}=1} E_{T-2}\Big [\max \limits _{\mathbf {w}_{T-1}:\mathbf {w}^{\prime }_{T-1}\mathbf {1}=1} \left( W_{T-1}\mathbf {w}^{\prime }_{T-1}\tilde{\varvec{\mu }}_{T} -\frac{\alpha }{2}W^2_{T-1}\mathbf {w}^{\prime }_{T-1}\varvec{A}_{T}\mathbf {w}_{T-1}\right) \Big ]\\&\quad =\max \limits _{\mathbf {w}_{T-2}:\mathbf {w}^{\prime }_{T-2}\mathbf {1}=1}E_{T-2} \Big [W_{T-1}\mathbf {w}^{*\;\prime }_{T-1}\tilde{\varvec{\mu }}_{T}-\frac{\alpha }{2} W^2_{T-1}\mathbf {w}^{*\;\prime }_{T-1}\varvec{A}_{T}\mathbf {w}^*_{T-1}\Big ]\\&\quad =\max \limits _{\mathbf {w}_{T-2}:\mathbf {w}^{\prime }_{T-2}\mathbf {1}=1} E_{T-2}\Big [W_{T-1}\left( \frac{\varvec{A}^{-1}_T\mathbf {1}}{\mathbf {1}^{\prime } \varvec{A}^{-1}_T\mathbf {1}}+\frac{1}{\alpha W_{T-1}}\tilde{\mathbf {Q}}_T\tilde{\varvec{\mu }}_T\right) ^{\prime } \tilde{\varvec{\mu }}_T\\&\qquad -\,\frac{\alpha }{2}W^2_{T-1}\left( \frac{\varvec{A}^{-1}_T\mathbf {1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_T\mathbf {1}}+\frac{1}{\alpha W_{T-1}} \tilde{\mathbf {Q}}_T\tilde{\varvec{\mu }}_T\right) ^{\prime }\varvec{A}_T\left( \frac{\varvec{A}^{-1}_T\mathbf {1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_T\mathbf {1}}+\frac{1}{\alpha W_{T-1}} \tilde{\mathbf {Q}}_T\tilde{\varvec{\mu }}_T\right) \Big ]\\&\quad =\max \limits _{\mathbf {w}_{T-2}:\mathbf {w}^{\prime }_{T-2}\mathbf {1}=1} E_{T-2}\Big [W_{T-1}\left( \frac{\mathbf {1}^{\prime }\varvec{A}_{T}^{-1}\tilde{\varvec{\mu }}_T}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T}\mathbf {1}} -\frac{1}{2}\underbrace{\frac{\tilde{\varvec{\mu }}_T^{\prime } \tilde{\mathbf {Q}}_T\varvec{A}_T\varvec{A}_{T}^{-1}\mathbf {1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T}\mathbf {1}}}_{=0} -\frac{1}{2}\underbrace{\frac{\mathbf {1}^{\prime }\varvec{A}_{T}^{-1} \varvec{A}_{T}\tilde{\mathbf {Q}}_T\tilde{\varvec{\mu }}_T}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T}\mathbf {1}}}_{=0}\right) \\&\qquad +\,\frac{1}{2\alpha }\tilde{\varvec{\mu }}_T^{\prime } \tilde{\mathbf {Q}}_T\tilde{\varvec{\mu }}_T-\frac{\alpha }{2} \frac{W^2_{T-1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_T\mathbf {1}}\Big ], \end{aligned}$$

Using the definitions of \(R_i,\,V_i\) and \(\tilde{s}_i\) we obtain

$$\begin{aligned}&V(T-2,W_{T-2},\mathcal {F}_{T-2})\\&\quad =\max \limits _{\mathbf {w}_{T-2}:\mathbf {w}^{\prime }_{T-2}\mathbf {1}=1}E_{T-2} \Big [W_{T-1}R_T+\frac{1}{2\alpha }\tilde{s}_T-\frac{\alpha }{2}W^2_{T-1}V_T\Big ]\\&\quad =\max \limits _{\mathbf {w}_{T-2}:\mathbf {w}^{\prime }_{T-2}\mathbf {1}=1}E_{T-2}\Big [W_{T-2} \mathbf {w}^{\prime }_{T-2}R_T\tilde{\mathbf {X}}_{T-1}+\frac{1}{2\alpha }\tilde{s}_T -\frac{\alpha }{2}W^2_{T-2}V_T(\mathbf {w}^{\prime }_{T-2}\tilde{\mathbf {X}}_{T-1})^2\Big ]\\&\quad =\max \limits _{\mathbf {w}_{T-2}:\mathbf {w}^{\prime }_{T-2}\mathbf {1}=1}\Big [W_{T-2}\mathbf {w}^{\prime }_{T-2} \tilde{\varvec{\mu }}^*_{T-1}+F(\tilde{s}_T) -\frac{\alpha }{2}W^2_{T-2}\left( \mathbf {w}^{\prime }_{T-2}\varvec{A}_{T-1}\mathbf {w}_{T-2}\right) \Big ], \end{aligned}$$

where

$$\begin{aligned} F(\tilde{s}_T)=\frac{1}{2\alpha }E_{T-2}[\tilde{s}_T]. \end{aligned}$$
(53)

\(F(\tilde{s}_T)\) does not depend on \(\mathbf {w}_{T-2}\).

The last expression is similar to the value function at period \(T-1\) [cf. (9)]. Hence, the optimal weights \(\mathbf {w}_{T-2}^*\) are given by

$$\begin{aligned} \mathbf {w}^*_{T-2}=\frac{\varvec{A}^{-1}_{T-1}\mathbf {1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T-1}\mathbf {1}}+\frac{1}{\alpha W_{T-2}}\tilde{\mathbf {Q}}_{T-1}\tilde{\varvec{\mu }}^*_{T-1}\quad \text {with}\quad \tilde{\mathbf {Q}}_{T-1}=\varvec{A}^{-1}_{T-1}- \frac{\varvec{A}^{-1}_{T-1}\mathbf {1}\mathbf {1}^{\prime } \varvec{A}^{-1}_{T-1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T-1}\mathbf {1}}. \end{aligned}$$
(54)

As a result, the following expressions are the basis of the induction

$$\begin{aligned} V(T-2,W_{T-2},\mathcal {F}_{T-2})&= \max \limits _{\mathbf {w}_{T-2}:\mathbf {w}^{\prime }_{T-2} \mathbf {1}=1}\Big [W_{T-2}\mathbf {w}^{\prime }_{T-2}\tilde{\varvec{\mu }}^*_{T-1}+F(\tilde{s}_T)\\&-\,\frac{\alpha }{2}W^2_{T-2}\mathbf {w}^{\prime }_{T-2}\varvec{A}_{T-1}\mathbf {w}_{T-2}\Big ]\\ \mathbf {w}^*_{T-2}&= \frac{\varvec{A}^{-1}_{T-1}\mathbf {1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T-1}\mathbf {1}}+\frac{1}{\alpha W_{T-2}}\mathbf {Q}_{T-1}\tilde{\varvec{\mu }}^*_{T-1} \end{aligned}$$

with \(F(\tilde{s}_T)\) as defined in (53).

In the induction hypothesis we assume that the statement holds for \(t=n\), i.e.,

$$\begin{aligned} V(T-n,W_{T-n},\mathcal {F}_{T-n})&= \max \limits _{\mathbf {w}_{T-n}:\mathbf {w}^{\prime }_{T-n}\mathbf {1}=1} \Big [W_{T-n}\mathbf {w}^{\prime }_{T-n}\tilde{\varvec{\mu }}^*_{T-n+1}\\&\quad +\,F(\tilde{s}_T,\tilde{s}_{T-1},\ldots ,\tilde{s}_{T-n+2}) -\frac{\alpha }{2}W^2_{T-n}\mathbf {w}^{\prime }_{T-n}\varvec{A}_{T-n+1}\mathbf {w}_{T-n}\Big ]\\ \mathbf {w}^*_{T-n}&= \frac{\varvec{A}^{-1}_{T-n+1}\mathbf {1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T-n+1}\mathbf {1}}+\frac{1}{\alpha W_{T-n}} \tilde{\mathbf {Q}}_{T-n+1}\tilde{\varvec{\mu }}^*_{T-n+1}, \end{aligned}$$

where

$$\begin{aligned} F(\tilde{s}_T,\tilde{s}_{T-1},\ldots ,\tilde{s}_{T-n+2}) =\frac{1}{2\alpha }\left( E_{T-2}[\tilde{s}_T] +\sum \limits _{m=T-n+2}^{T-1}E_{m-2}[\tilde{s}_m]\right) . \end{aligned}$$

Note that the last quantity does not depend on \(\mathbf {w}_{T-n}\).

In the inductive step we prove that the last identities also hold for \(t=n+1\). It is sufficient to derive the value function for period \(T-(n+1)\) which is given by

$$\begin{aligned}&V(T-(n+1),W_{T-(n+1)},\mathcal {F}_{T-(n+1)})\\&\quad =\max \limits _{\mathbf {w}^{\prime }_{T-(n+1)}\mathbf {1}=1} E_{T-(n+1)}\left( W_{T-n}\mathbf {w}^{*\;\prime }_{T-n}\tilde{\varvec{\mu }}^*_{T-n+1} +F(\tilde{s}_T,\tilde{s}_{T-1},\ldots ,\tilde{s}_{T-n+2})\right. \\&\qquad -\,\left. \frac{\alpha }{2}W^2_{T-n}\mathbf {w}^{*\;\prime }_{T-n} \varvec{A}_{T-n+1}\mathbf {w}^*_{T-n}\right) =\max \limits _{\mathbf {w}^{\prime }_{T-(n+1)}\mathbf {1}=1} E_{T-(n+1)}\\&\qquad \times \,\Big [W_{T-n}\left( \underbrace{\frac{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T-n+1}\tilde{\varvec{\mu }}^*_{T-n+1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T-n+1}\mathbf {1}}}_{=R_{T-n+1}} -\frac{1}{2}\underbrace{\frac{\tilde{\varvec{\mu }}_{T-n+1}^{*\;\prime } \tilde{\mathbf {Q}}_{T-n+1}\mathbf {1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T-n+1}\mathbf {1}}}_{=0} -\frac{1}{2}\underbrace{\frac{\mathbf {1}^{\prime }\tilde{\mathbf {Q}}_{T-n+1}\tilde{\varvec{\mu }}^*_{T-n+1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T-n+1}\mathbf {1}}}_{=0}\right) \\&\qquad +\,F(\tilde{s}_T,\tilde{s}_{T-1},\ldots ,\tilde{s}_{T-n+2}) +\frac{1}{2\alpha }\underbrace{\tilde{\varvec{\mu }}^{*\;\prime }_{T-n+1}\tilde{\mathbf {Q}}_{T-n+1}\tilde{\varvec{\mu }}^*_{T-n+1}}_{=\tilde{s}_{T-n+1}} -\frac{\alpha }{2}\underbrace{\frac{1}{\mathbf {1}^{\prime }\varvec{A}^{-1}_{T-n+1}\mathbf {1}}}_{=V_{T-n+1}}W^2_{T-n}\Big ]. \end{aligned}$$

Hence, we obtain

$$\begin{aligned}&V(T-(n+1),W_{T-(n+1)},\mathcal {F}_{T-(n+1)})\\&\quad =\max \limits _{\mathbf {w}^{\prime }_{T-(n+1)}\mathbf {1}=1} E_{T-(n+1)}\Big [W_{T-(n+1)}\mathbf {w}^{\prime }_{T-(n+1)}\tilde{\mathbf {X}}_{T-n}R_{T-n+1}\\&\qquad +\,F(\tilde{s}_T,\tilde{s}_{T-1},\ldots ,\tilde{s}_{T-n+1}) -\frac{\alpha }{2}W^2_{T-(n+1)}V_{T-n+1}(\mathbf {w}^{\prime }_{T-n+1}\tilde{\mathbf {X}}_{T-n})^2 \Big ]\\&\quad =\,\max \limits _{\mathbf {w}^{\prime }_{T-(n+1)}\mathbf {1}=1} \left( W_{T-(n+1)}\mathbf {w}^{\prime }_{T-(n+1)}\tilde{\varvec{\mu }}^*_{T-n} +F(\tilde{s}_T,\tilde{s}_{T-1},\ldots ,\tilde{s}_{T-n+1})\right. \\&\qquad -\,\left. \frac{\alpha }{2}W^2_{T-(n+1)}\mathbf {w}^{\prime }_{T-(n+1)} \varvec{A}_{T-n}\mathbf {w}_{T-(n+1)}\right) , \end{aligned}$$

where

$$\begin{aligned} F(\tilde{s}_T,\tilde{s}_{T-1},\ldots ,\tilde{s}_{T-n+1}) =F(s_T,\tilde{s}_{T-1},\ldots ,\tilde{s}_{T-n+2}) +\frac{1}{2\alpha }E_{T-(n+1)}[\tilde{s}_{T-n+1}]. \end{aligned}$$

It is the desired form of the value function at period \(T-(n+1)\). Because this expression is similar to the value function at period \(T-n\), we get the following formula for the weights at period \(T-(n+1)\)

$$\begin{aligned} \mathbf {w}^*_{T-(n+1)}=\frac{\varvec{A}^{-1}_{T-n}\mathbf {1}}{\mathbf {1}^{\prime } \varvec{A}^{-1}_{T-n}\mathbf {1}}+\frac{1}{\alpha W_{T-(n+1)}}\tilde{\mathbf {Q}}_{T-n}\tilde{\varvec{\mu }}^*_{T-n}. \end{aligned}$$

The theorem is proved.

For proving Corollary 1 we use the result of Proposition 6.1.

Proposition 1

Let \(\mathbf {X}\) be a random vector with mean \(\varvec{\mu }\) and positive definite covariance matrix \(\varvec{\varSigma }\). Let \(\varvec{A}=\varvec{\varSigma }+\tilde{\varvec{\mu }}\tilde{\varvec{\mu }}^\prime \) with \(\tilde{\varvec{\mu }}=\varvec{\mu }+\mathbf {1}\). If

$$\begin{aligned} \mathbf {w}=\frac{\varvec{A}^{-1}\mathbf {1}}{\mathbf {1}^{\prime }\varvec{A}^{-1}\mathbf {1}} +\tilde{\alpha }^{-1}\tilde{\mathbf {Q}}\tilde{\varvec{\mu }}\quad \text {with}\quad \tilde{\mathbf {Q}}=\varvec{A}^{-1}-\frac{\varvec{A}^{-1}\mathbf {1}\mathbf {1}^\prime \varvec{A}^{-1}}{\mathbf {1}^\prime \varvec{A}^{-1}\mathbf {1}} \end{aligned}$$
(55)

then

$$\begin{aligned} \mathbf {w}=\frac{\varvec{\varSigma }^{-1}\mathbf {1}}{\mathbf {1}^{\prime }\varvec{\varSigma }^{-1}\mathbf {1}} +\alpha ^{-1}\mathbf {Q}\tilde{\varvec{\mu }}\quad \text {with}\quad \mathbf {Q}= \varvec{\varSigma }^{-1}-\frac{\varvec{\varSigma }^{-1}\mathbf {1}\mathbf {1}^\prime \varvec{\varSigma }^{-1}}{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}} \end{aligned}$$
(56)

and

$$\begin{aligned} \alpha ^{-1}=\frac{\tilde{\alpha }^{-1}(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}) -\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}{(1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}) \mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}-(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})^2}= \frac{\tilde{\alpha }^{-1}-1-R_{ GMV }}{1+s}, \end{aligned}$$
(57)

where \(R_{ GMV }=\frac{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\varvec{\mu }}{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}}, \quad s=\tilde{\varvec{\mu }}^{\prime }\mathbf {Q}\tilde{\varvec{\mu }}=\varvec{\mu }^{\prime }\mathbf {Q}\varvec{\mu }\).

Proof of Proposition 1

From (56) we obtain

$$\begin{aligned} \mathbf {w}=\left( \frac{1}{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}} -\alpha ^{-1}\frac{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}}\right) \varvec{\varSigma }^{-1}\mathbf {1}+\alpha ^{-1}\varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}=C_1\varvec{\varSigma }^{-1}\mathbf {1}+C_2\varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}, \end{aligned}$$
(58)

where

$$\begin{aligned} C_1=\frac{1}{\mathbf {1}^{\prime }\varvec{\varSigma }^{-1}\mathbf {1}}-C_2 \frac{\mathbf {1}^{\prime }\varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}{\mathbf {1}^{\prime }\varvec{\varSigma }^{-1}\mathbf {1}} \quad \text {and} \quad C_2=\alpha ^{-1}. \end{aligned}$$
(59)

In order to prove the proposition we need to show that (55) can be expressed in the same way. The application of the Sherman–Morrison formula [Harville (1997, Theorem 18.2.8)], i.e.,

$$\begin{aligned} \varvec{A}^{-1}=(\varvec{\varSigma }+\tilde{\varvec{\mu }}\tilde{\varvec{\mu }}^{\prime })^{-1}= \varvec{\varSigma }^{-1}-\frac{\varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}\tilde{\varvec{\mu }}^{\prime } \varvec{\varSigma }^{-1}}{1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}} \end{aligned}$$

leads to

$$\begin{aligned} \mathbf {w}&= (1-K\tilde{\alpha }^{-1})\frac{1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}{(1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}) \mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}-(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})^2} \varvec{\varSigma }^{-1}\mathbf {1}\nonumber \\&\quad +\,\left( -\frac{\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\mathbf {1}(1-K\tilde{\alpha }^{-1})}{(1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}-(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})^2} +\frac{\tilde{\alpha }^{-1}}{1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}\right) \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}, \end{aligned}$$
(60)

where

$$\begin{aligned} K=\mathbf {1}^\prime \varvec{A}^{-1}\tilde{\varvec{\mu }}=\frac{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}{1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}. \end{aligned}$$
(61)

From the structure of (58) and (60) we get

$$\begin{aligned} \alpha ^{-1}&= C_2=\left( -\frac{\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1} \mathbf {1}(1-K\tilde{\alpha }^{-1})}{(1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}) \mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}-(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})^2}\right) +\frac{\tilde{\alpha }^{-1}}{1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}\\&= \frac{\tilde{\alpha }^{-1}(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}) -\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}{(1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}) \mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}-(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})^2} =\frac{\tilde{\alpha }^{-1}-1-R_{ GMV }}{1+s}. \end{aligned}$$

For proving the proposition we only need to show the equality of the coefficients in front of \(\varvec{\varSigma }^{-1}\mathbf {1}\) in (58) and (60). It holds that

$$\begin{aligned} C_1&= \frac{1}{\mathbf {1}^{\prime }\varvec{\varSigma }^{-1}\mathbf {1}}-C_2\frac{\mathbf {1}^{\prime } \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}{\mathbf {1}^{\prime }\varvec{\varSigma }^{-1}\mathbf {1}}= \frac{1}{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}}\\&\quad -\,\left( \frac{\tilde{\alpha }^{-1}}{1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}} -\frac{\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\mathbf {1}(1-K\tilde{\alpha }^{-1})}{(1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})\mathbf {1}^\prime \varvec{\varSigma }^{-1} \mathbf {1}-(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})^2}\right) \frac{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }}}{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}}\\&= \frac{(1-K\tilde{\alpha }^{-1})}{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}} +\frac{(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})^2(1-K\tilde{\alpha }^{-1})}{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}\left( (1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})\mathbf {1}^\prime \varvec{\varSigma }^{-1} \mathbf {1}-(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})^2\right) }\\&= \frac{(1-K\tilde{\alpha }^{-1})}{\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}} \left( \frac{(1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}}{(1+\tilde{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})\mathbf {1}^\prime \varvec{\varSigma }^{-1}\mathbf {1}-(\mathbf {1}^\prime \varvec{\varSigma }^{-1}\tilde{\varvec{\mu }})^2}\right) . \end{aligned}$$

The last identity completes the proof.

Proof of Corollary 1

Under the assumption of independence it holds that

$$\begin{aligned} \varvec{A}_{T-t+1}= \left\{ \begin{array}{ll} \varvec{\varSigma }_T+\tilde{\varvec{\mu }}_T\tilde{\varvec{\mu }}^\prime _T &{}\quad \text {for}\quad t=1\\ V_{T-t+2}(\varvec{\varSigma }_{T-t+1}+\tilde{\varvec{\mu }}_{T-t+1}\tilde{\varvec{\mu }}^\prime _{T-t+1}) &{} \quad \text {for}\quad t=2,\ldots ,T, \end{array} \right. \end{aligned}$$
(62)

and

$$\begin{aligned} \tilde{\varvec{\mu }}^*_{T-t+1}= \left\{ \begin{array}{ll} \tilde{\varvec{\mu }}_T &{}\quad \text {for}\quad t=1\\ R_{T-t+2} \tilde{\varvec{\mu }}_{T-t+1} &{} \quad \text {for}\quad t=2,\ldots ,T\\ \end{array} \right. . \end{aligned}$$
(63)

Let \(R_{T+1}=V_{T+1}=1\). Then,

$$\begin{aligned} \mathbf {w}^*_{T-t}&= \frac{(V_{T-t+2}(\varvec{\varSigma }_{T-t+1} +\tilde{\varvec{\mu }}_{T-t+1}\tilde{\varvec{\mu }}^\prime ))^{-1}\mathbf {1}}{\mathbf {1}^{\prime }(V_{T-t+2} (\varvec{\varSigma }_{T-t+1}+\tilde{\varvec{\mu }}_{T-t+1}\tilde{\varvec{\mu }}^\prime _{T-t+1}))^{-1}\mathbf {1}} +\frac{1}{\alpha W_{T-t}}\tilde{\mathbf {Q}}_{T-t+1} (R_{T-t+2}\tilde{\varvec{\mu }}_{T-t+1})\\&= \frac{(\varvec{\varSigma }_{T-t+1}+\tilde{\varvec{\mu }}_{T-t+1}\tilde{\varvec{\mu }}^\prime _{T-t+1})^{-1}\mathbf {1}}{\mathbf {1}^{\prime }(\varvec{\varSigma }_{T-t+1}+\tilde{\varvec{\mu }}_{T-t+1}\tilde{\varvec{\mu }}^\prime _{T-t+1})^{-1}\mathbf {1}} +\frac{R_{T-t+2}}{\alpha W_{T-t}V_{T-t+2}} \tilde{\tilde{\mathbf {Q}}}_{T-t+1} \tilde{\varvec{\mu }}_{T-t+1} \end{aligned}$$

with

$$\begin{aligned} \tilde{\tilde{\mathbf {Q}}}_{T-t+1}&= \left( \varvec{\varSigma }_{T-t+1}+\tilde{\varvec{\mu }}_{T-t+1} \tilde{\varvec{\mu }}^\prime _{T-t+1}\right) ^{-1}\\&\quad -\,\frac{\left( \varvec{\varSigma }_{T-t+1} +\tilde{\varvec{\mu }}_{T-t+1}\tilde{\varvec{\mu }}^\prime _{T-t+1}\right) ^{-1}\mathbf {1}\mathbf {1}' \left( \varvec{\varSigma }_{T-t+1}+\tilde{\varvec{\mu }}_{T-t+1}\tilde{\varvec{\mu }}_{T-t+1}^\prime \right) ^{-1}}{\mathbf {1}^\prime \left( \varvec{\varSigma }_{T-t+1}+\tilde{\varvec{\mu }}_{T-t+1}\tilde{\varvec{\mu }}^\prime _{T-t+1}\right) ^{-1}\mathbf {1}} \end{aligned}$$

and

$$\begin{aligned} \frac{R_{T-t+2}}{V_{T-t+2}}= \prod \limits _{i=T-t+2}^{T} \frac{\frac{\mathbf {1}^{\prime }(\varvec{\varSigma }_i+\tilde{\varvec{\mu }}_i\tilde{\varvec{\mu }}_i^\prime )^{-1}\tilde{\varvec{\mu }}_i}{\mathbf {1}^{\prime }(\varvec{\varSigma }_i+\tilde{\varvec{\mu }}_i\tilde{\varvec{\mu }}_i^\prime )^{-1}\mathbf {1}}}{\frac{1}{\mathbf {1}^{\prime }(\varvec{\varSigma }_i+\tilde{\varvec{\mu }}_i\tilde{\varvec{\mu }}_i^\prime )^{-1}\mathbf {1}}} = \prod \limits _{i=T-t+2}^{T} \mathbf {1}^{\prime }(\varvec{\varSigma }_i+\tilde{\varvec{\mu }}_i\tilde{\varvec{\mu }}_i^\prime ) ^{-1}\tilde{\varvec{\mu }}_i, \end{aligned}$$

where the last identity follows from the definition of \(R_{T-t+2}\) and \(V_{T-t+2}\) given in (16).

The rest of the proof follows from Proposition 1 if \(\varvec{\varSigma }\) is replaced by \(\varvec{\varSigma }_{T-t+1}\), \(\tilde{\varvec{\mu }}\) by \(\tilde{\varvec{\mu }}_{T-t+1}\) and

$$\begin{aligned} \tilde{\alpha }^{-1}\!=\!\frac{1}{\alpha W_{T-t}}\frac{R_{T-t+2}}{V_{T-t+2}} \!=\!\frac{1}{\alpha W_{T-t}}\left( \prod \limits _{i=T-t+2}^{T} \mathbf {1}^{\prime }(\varvec{\varSigma }_i\!+\!\tilde{\varvec{\mu }}_i\tilde{\varvec{\mu }}_i^\prime )^{-1}\tilde{\varvec{\mu }}_i\right) \!=\!\frac{1}{\alpha W_{T-t}}\left( \prod \limits _{i=T-t+2}^{T}a_i\right) , \end{aligned}$$

where

$$\begin{aligned} a_i=\mathbf {1}^{\prime }(\varvec{\varSigma }_i+\tilde{\varvec{\mu }}_i\tilde{\varvec{\mu }}_i^\prime )^{-1}\tilde{\varvec{\mu }}_i =\frac{1+R_{ GMV ,i}}{(1+R_{ GMV ,i})^2+(1+s_i)V_{ GMV ,i}}. \end{aligned}$$

The last expression is obtained by applying the Sherman–Morrison formula. At last, we recall \(\mathbf {Q}_{T-t+1}\mathbf {1}=\mathbf {0}\) and get (18). Thus the corollary is proved.

Proof of Theorem 2

The expression of the optimal weights at period \(T-1\) is given in (28). The rest of the theorem’s statement is proved by using the mathematical induction on the expressions of the portfolio weights and the value function. We use similar notations as in the proof of Theorem 1. Let \(\breve{\varvec{A}}_i=E_{i-1}[(1-\tilde{s}_{i+1})\breve{\mathbf {X}}_{i}\breve{\mathbf {X}}^\prime _{i}]\) for \(i=1,\ldots ,T-1\) and \(\breve{\varvec{A}}_T=\varvec{\varSigma }_T-\breve{\varvec{\mu }}_T\breve{\varvec{\mu }}_T^\prime ,\)

$$\begin{aligned} \breve{\varvec{\mu }}^*_i=\left\{ \begin{array}{ll} \breve{\varvec{\mu }}_{T} &{}\quad \text {for}\quad i=T\\ E_{i-1}[(1-\tilde{s}_{i+1})\tilde{\mathbf {X}}_{i}]&{} \quad \text {for}\quad i=1,\ldots ,T-1, \end{array} \right. \end{aligned}$$
(64)

and \(\breve{s}_i=\breve{\varvec{\mu }}_i^{*\;\prime } \breve{\varvec{A}}^{-1}_i\breve{\varvec{\mu }}^*_i\) for \(i=2,\ldots ,T\).

Let \(\mathbf {w}^{*\;\prime }_{T-1}\) be the optimal portfolio weight calculated at period \(T-1\) in the case of a riskless asset as expressed in (28). First, we calculate the value function at period \(T-2\). It holds that

$$\begin{aligned}&V(T-2,W_{T-2},\mathcal {F}_{T-2})\\&\quad =\max \limits _{\mathbf {w}_{T-2}}E_{T-2}\Big [W_{T-1} \left( R_{f,T}+\mathbf {w}^{*\;\prime }_{T-1}\breve{\varvec{\mu }}_{T}\right) \\&\qquad -\,\frac{\alpha }{2}W^2_{T-1}\left( \mathbf {w}^{*\;\prime }_{T-1} \breve{\varvec{A}}_{T}\mathbf {w}^*_{T-1}+R^2_{f,T}+2R_{f,T}\mathbf {w}^{*\;\prime }_{T-1} \breve{\varvec{\mu }}_{T}\right) \Big ]\\&\quad =\max \limits _{\mathbf {w}_{T-2}}E_{T-2}\Big [W_{T-1}\left( R_{f,T} +\left( \frac{1}{\alpha W_{T-1}}-R_{f,T}\right) \breve{\varvec{\mu }}^\prime _T\breve{\varvec{A}}^{-1}_T \breve{\varvec{\mu }}_{T}\right) \\&\qquad -\,\frac{\alpha }{2}W^2_{T-1}\left( \left( \frac{1}{\alpha W_{T-1}} -R_{f,T}\right) \breve{\varvec{\mu }}^\prime _T\breve{\varvec{A}}^{-1}_T\breve{\varvec{A}}_{T}\left( \frac{1}{\alpha W_{T-1}}-R_{f,T}\right) \breve{\varvec{A}}^{-1}_T\breve{\varvec{\mu }}_T+R^2_{f,T}\right. \\&\qquad +\,\left. 2R_{f,T}\left( \frac{1}{\alpha W_{T-1}}-R_{f,T}\right) \breve{\varvec{\mu }}^\prime _T\breve{\varvec{A}}^{-1}_T\breve{\varvec{\mu }}_{T}\right) \Big ]. \end{aligned}$$

Using the definition of \(\breve{s}_T\) we obtain

$$\begin{aligned}&V(T-2,W_{T-2},\mathcal {F}_{T-2})=\max \limits _{\mathbf {w}_{T-2}}E_{T-2}\Big [W_{T-1}R_{f,T} (1-\breve{s}_T)+\frac{\breve{s}_T}{\alpha }\\&\qquad -\frac{\alpha }{2}W^2_{T-1}\left( \left( \frac{1}{\alpha W_{T-1}}-R_{f,T}\right) ^2\breve{s}_T+R^2_{f,T} +2R_{f,T}\left( \frac{1}{\alpha W_{T-1}}-R_{f,T}\right) \breve{s}_T\right) \\&\qquad =\max \limits _{\mathbf {w}_{T-2}}E_{T-2}\Big [W_{T-1} R_{f,T}(1-\breve{s}_T)+\frac{\breve{s}_T}{2\alpha } -\frac{\alpha }{2}W^2_{T-1}R^2_{f,T}\left( 1-\breve{s}_T\right) \Big ]\\&\quad =\max \limits _{\mathbf {w}_{T-2}}\Big [W_{T-2}R_{f,T}\left( E_{T-2}[1-\breve{s}_T]R_{f,T-1}+\mathbf {w}^{\prime }_{T-2}\breve{\varvec{\mu }}^*_{T-1}\right) \\&\qquad -\,\frac{\alpha }{2}W^2_{T-2}R^2_{f,T} \left( \mathbf {w}^{\prime }_{T-2}\varvec{A}_{T-1}\mathbf {w}_{T-2} +E_{T-2}[1-\breve{s}_T]R^2_{f,T-1}\right. \\&\qquad \left. +\,2R_{f,T-1} \mathbf {w}^{\prime }_{T-2}\breve{\varvec{\mu }}^*_{T-1}\right) +\frac{E_{T-2}[\breve{s}_T]}{2\alpha }\Big ]. \end{aligned}$$

The last expression is similar to the value function at the period \(T-1\). Hence, it is maximized on the weights \(\mathbf {w}_{T-2}^*\) expressed as

$$\begin{aligned} \mathbf {w}^*_{T-2}=\left( \frac{1}{\alpha W_{T-2}}(R_{f,T})^{-1}-R_{f,T-1}\right) \breve{\varvec{A}}^{-1}_{T-1}\breve{\varvec{\mu }}^*_{T-1}. \end{aligned}$$
(65)

Hence, the basis of induction are the following expressions

$$\begin{aligned}&V(T-2,W_{T-2},\mathcal {F}_{T-2})= \max \limits _{\{\mathbf {w}_{T-2}\}}\Big [W_{T-2} R_{f,T}\left( b_TR_{f,T-1}+\mathbf {w}^{\prime }_{T-2}\breve{\varvec{\mu }}^*_{T-1}\right) \\&\quad -\frac{\alpha }{2}W^2_{T-1}R^2_{f,T} \left( \mathbf {w}^{\prime }_{T-2}\varvec{A}_{T-1}\mathbf {w}_{T-2}+b_TR^2_{f,T-1}+2R_{f,T-1}\mathbf {w}^{\prime }_{T-2}\breve{\varvec{\mu }}^*_{T-1}\right) +F(\breve{s}_T)\Big ]\\&\mathbf {w}^*_{T-2}=\left( R_{f,T-1}-\frac{1}{\alpha W_{T-2}}(R_{f,T})^{-1}\right) \breve{\varvec{A}}^{-1}_{T-1}\breve{\varvec{\mu }}^*_{T-1} \end{aligned}$$

with \(F(\breve{s}_T)=\frac{E_{T-2}[\breve{s}_T]}{2\alpha }\) and \(b_T=E_{T-2}[1-\breve{s}_T]\).

In the induction hypothesis we assume that the statement holds for \(t=n\), i.e.,

$$\begin{aligned}&V(T-n,W_{T-n},\mathcal {F}_{T-n})\\&\quad =\max \limits _{\{\mathbf {w}_{T-n}\}} \Big [W_{T-n}\left( \prod \limits _{i=T-n+2}^{T}R_{f,i}\right) \left( b_{T-n+2}R_{f,T-n+1}+\mathbf {w}^{\prime }_{T-n}\breve{\varvec{\mu }}^*_{T-n+1}\right) \\&\quad -\,\frac{\alpha }{2}W^2_{T-n}\left( \prod \limits _{i=T-n+2}^{T} R^2_{f,i}\right) \left( \mathbf {w}^{\prime }_{T-n}\varvec{A}_{T-n+1}\mathbf {w}_{T-n} +b_{T-n+2}R^2_{f,T-n+1}\right. \\&\quad \left. +\,2R_{f,T-n+1}\mathbf {w}^{\prime }_{T-n}\breve{\varvec{\mu }}^*_{T-n+1}\right) +F(\breve{s}_T,\ldots ,\breve{s}_{T-n+2})\Big ],\\&\mathbf {w}^*_{T-n}=\left( \frac{1}{\alpha W_{T-n}} \left( \prod \limits _{i=T-n+2}^{T}R_{f,i}\right) ^{-1} -R_{f,T-n+1}\right) \breve{\varvec{A}}^{-1}_{T-n+1}\breve{\varvec{\mu }}^*_{T-n+1}. \end{aligned}$$

with \(F(\breve{s}_T,\ldots ,\breve{s}_{T-n+2})=\frac{1}{2\alpha }\left( E_{T-2}[\breve{s}_T]+\sum \nolimits _{m=T-n+2}^{T-1}\prod \nolimits _{i=m}^{T-1}b_iE_{m-2}[\breve{s}_m]\right) \) and \(b_i=E_{i-2}[1-\breve{s}_i]\).

In the inductive step we prove that the last identities also hold for \(t=n+1\). It is sufficient to derive the value function for period \(T-(n+1)\) which is given by

$$\begin{aligned}&V(T-(n+1),W_{T-(n+1)},\mathcal {F}_{T-(n+1)})\\&\quad =\max \limits _{\mathbf {w}_{T-(n+1)}}E_{T-(n+1)} \Big [W_{T-n}\left( \prod \limits _{i=T-n+2}^{T}R_{f,i}\right) \left( b_{T-n+2}R_{f,T-n+1} +\mathbf {w}^{*\;\prime }_{T-n}\breve{\varvec{\mu }}^*_{T-n+1}\right) \\&\qquad -\,\frac{\alpha }{2}W^2_{T-n}\left( \prod \limits _{i=T-n+2}^{T} R^2_{f,i}\right) \left( \mathbf {w}^{*\;\prime }_{T-n}\varvec{A}_{T-n+1}\mathbf {w}^*_{T-n}+b_{T-n+2} R^2_{f,T-n+1}\right. \\&\qquad \left. +\,2R_{f,T-n+1}\mathbf {w}^{*\;\prime }_{T-n}\breve{\varvec{\mu }}^*_{T-n+1}\right) -F(\breve{s}_T,\ldots ,\breve{s}_{T-n+2})\Big ]\\&\quad =\max \limits _{\mathbf {w}_{T-(n+1)}}E_{T-(n+1)}\Big [W_{T-n}\prod \limits _{i=T-n+2}^{T}R_{f,i} \left( b_{T-n+2}R_{f,T-n+1}\right. \\&\qquad \left. +\,\left( \frac{1}{\alpha W_{T-n}}\left( \prod \limits _{i=T-n+2}^{T}R_{f,i}\right) ^{-1}-R_{f,T-n+1}\right) \right. \\&\qquad \times \,\left. \breve{\varvec{\mu }}^{*\;\prime }_{T-n+1} \breve{\varvec{A}}^{-1}_{T-n+1}\breve{\varvec{\mu }}^*_{T-n+1}\right) \\&\qquad -\,\frac{\alpha }{2}W^2_{T-n}\prod \limits _{i=T-n+2}^{T}R^2_{f,i} \left( \left( \frac{1}{\alpha W_{T-n}}\left( \prod \limits _{i=T-n+2}^{T} R_{f,i}\right) ^{-1}\right. \right. \\&\qquad \left. \left. -\,R_{f,T-n+1}\right) \breve{\varvec{\mu }}^{*\;\prime }_{T-n+1} \breve{\varvec{A}}^{-1}_{T-n+1}\varvec{A}_{T-n+1}\right. \\&\qquad \times \,\left. \left( \frac{1}{\alpha W_{T-n}} \left( \prod \limits _{i=T-n+2}^{T}R_{f,i}\right) ^{-1}-R_{f,T-n+1}\right) \breve{\varvec{A}}^{-1}_{T-n+1}\breve{\varvec{\mu }}^*_{T-n+1}+b_{T-n+2}R^2_{f,T-n+1}\right. \\&\qquad +\,\left. 2R_{f,T-n+1}\left( \frac{1}{\alpha W_{T-n}} \left( \prod \limits _{i=T-n+2}^{T}R_{f,i}\right) ^{-1} -R_{f,T-n+1}\right) \breve{\varvec{\mu }}^{*\;\prime }_{T-n+1} \breve{\varvec{A}}^{-1}_{T-n+1}\breve{\varvec{\mu }}^{*}_{T-n+1}\right) \\&\qquad +\,F(\breve{s}_T,\ldots ,\breve{s}_{T-n+2})\Big ]. \end{aligned}$$

Using the definition of \(\breve{s}_i\) and denoting \(\xi =\prod \limits _{i=T-n+2}^{T}R_{f,i}\) we receive

$$\begin{aligned}&V(T-(n+1),W_{T-(n+1)},\mathcal {F}_{T-(n+1)})\\&\quad =\max \limits _{\{\mathbf {w}_{T-(n+1)}\}}E_{T-(n+1)}\Big [W_{T-n}R_{f,T-n+1}\xi b_{T-n+2}(1-\breve{s}_{T-n+1})+\frac{b_{T-n+2}}{\alpha }\breve{s}_{T-n+1}\\&\qquad +\,F(\breve{s}_T,\ldots ,\breve{s}_{T-n+2})-\frac{\alpha }{2}W^2_{T-n}b_{T-n+2}\xi ^2\left( \left( \frac{\xi ^{-1}}{\alpha W_{T-n}}-R_{f,T-n+1}\right) ^2\breve{s}_{T-n+1}+R^2_{f,T-n+1}\right. \\&\qquad +\,\left. 2R_{f,T-n+1}\left( \frac{\xi ^{-1}}{\alpha W_{T-(n+1)}}-R_{f,T-n+1}\right) \breve{s}_{T-n+1}\right) \Big ]\\&\quad =\,\max \limits _{\{\mathbf {w}_{T-(n+1)}\}}E_{T-(n+1)}\Big [W_{T-n}\xi R_{f,T-n+1} b_{T-n+2} (1-\tilde{s}_{T-n+1})\\&\qquad +\,\left( \frac{\breve{s}_{T-n+1}}{2\alpha }b_{T-n+2}+F(\breve{s}_T,\ldots ,\breve{s}_{T-n+2})\right) -\,\frac{\alpha }{2}W^2_{T-n}(\xi R_{f,T-n+1})^{2}b_{T-n+2} (1-\tilde{s}_{T-n+1})\Big ]\\&\quad =\,\max \limits _{\{\mathbf {w}_{T-(n+1)}\}}\Big [W_{T-(n+1)}\xi R_{f,T-n+1} b_{T-n+2}\left( E_{T-(n+1)}(1-\tilde{s}_{T-n+1})R_{f,T-n}\right. \\&\qquad \left. +\,\mathbf {w}^{\prime }_{T-(n+1)}\breve{\varvec{\mu }}^*_{T-n}\right) \\&\qquad -\,\frac{\alpha }{2}W^2_{T-(n+1)}(\xi R_{f,T-n+1})^{2}b_{T-n+2} \left( \mathbf {w}^{\prime }_{T-(n+1)}\varvec{A}_{T-n}\mathbf {w}_{T-(n+1)}\right. \\&\qquad \left. +\,E_{T-(n+1)}(1-\tilde{s}_{T-n+1})R^2_{f,T-n}\right. \\&\qquad +\,\left. 2R_{f,T-n}\mathbf {w}^{\prime }_{T-(n+1)}\breve{\varvec{\mu }}^*_{T-n}+F(\breve{s}_T,\ldots ,\breve{s}_{T-n+1})\right) . \end{aligned}$$

where \(F(\breve{s}_T,\ldots ,\breve{s}_{T-n+1})=F(\breve{s}_T,\ldots ,\breve{s}_{T-n+2})+\frac{1}{2}\frac{E_{T-(n+1)}[\breve{s}_{T-n+1}]}{\alpha }b_{T-n+2}\).

It is a desired form of the value function at period \(T-(n+1)\). Because this expression is similar to the value function at period \(T-n\), we get the following formula for the weights at period \(T-(n+1)\)

$$\begin{aligned} \mathbf {w}^*_{T-(n+1)}=\left( \frac{(\xi R_{f,T-n+1})^{-1}}{\alpha W_{T-n}}-R_{f,T-n}\right) \breve{\varvec{A}}^{-1}_{T-n}\breve{\varvec{\mu }}^*_{T-n}. \end{aligned}$$

Substituting \(\xi =\prod \nolimits _{i=T-n+2}^{T}R_{f,i}\) leads to the expression given in the statement of Theorem 2. The theorem is proved.

Proposition 2

Let \(\mathbf {X}\) be a random vector with mean \(\varvec{\mu }\) and positive definite covariance matrix \(\varvec{\varSigma }\). Let \(\breve{\varvec{A}}=\varvec{\varSigma }+\breve{\varvec{\mu }}\breve{\varvec{\mu }}^\prime \) and \(\breve{\varvec{\mu }}=\varvec{\mu }-r_{f}\mathbf {1}\). If

$$\begin{aligned} \mathbf {w}=\tilde{\gamma }^{-1}\breve{\varvec{A}}^{-1}\breve{\varvec{\mu }}\end{aligned}$$
(66)

then

$$\begin{aligned} \mathbf {w}=\gamma ^{-1}\varvec{\varSigma }^{-1}\breve{\varvec{\mu }}\quad \text {with}\quad \gamma ^{-1}=\frac{\tilde{\gamma }^{-1}}{1+\breve{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\breve{\varvec{\mu }}}. \end{aligned}$$
(67)

Proof of Proposition 2

The application of the Sherman–Morrison formula, i.e.,

$$\begin{aligned} \breve{\varvec{A}}^{-1}=(\varvec{\varSigma }+\breve{\varvec{\mu }}\breve{\varvec{\mu }}^{\prime })^{-1}=\varvec{\varSigma }^{-1} -\frac{\varvec{\varSigma }^{-1}\breve{\varvec{\mu }}\breve{\varvec{\mu }}^{\prime }\varvec{\varSigma }^{-1}}{1+\breve{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\breve{\varvec{\mu }}} \end{aligned}$$

leads to

$$\begin{aligned} \mathbf {w}=\tilde{\gamma }^{-1}\varvec{\varSigma }^{-1}\breve{\varvec{\mu }}-\tilde{\gamma }^{-1} \frac{\varvec{\varSigma }^{-1}\breve{\varvec{\mu }}\breve{\varvec{\mu }}^{\prime }\varvec{\varSigma }^{-1}}{1+\breve{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\breve{\varvec{\mu }}}\breve{\varvec{\mu }}=\frac{\tilde{\gamma }^{-1}}{1+\breve{\varvec{\mu }}^\prime \varvec{\varSigma }^{-1}\breve{\varvec{\mu }}}\varvec{\varSigma }^{-1}\breve{\varvec{\mu }}, \end{aligned}$$

what completes the proof of the proposition.

Proof of Corollary 2

Under the assumption of independence

$$\begin{aligned} \breve{\varvec{A}}_{T-t+1}= \left\{ \begin{array}{ll} \varvec{\varSigma }_{T}+\breve{\varvec{\mu }}_{T}\breve{\varvec{\mu }}_{T}^\prime &{}\quad \text {for}\quad t=1\\ (1-\tilde{s}_{T-t+2}) (\varvec{\varSigma }_{T-t+1}+\breve{\varvec{\mu }}_{T-t+1}\breve{\varvec{\mu }}_{T-t+1}^\prime )&{} \quad \text {for}\quad t=2,\ldots ,T\\ \end{array} \right. \end{aligned}$$
(68)

and

$$\begin{aligned} \breve{\varvec{\mu }}_{T-t+1}^*= \left\{ \begin{array}{ll} \breve{\varvec{\mu }}_{T} &{}\quad \text {for}\quad t=1\\ (1-\tilde{s}_{T-t+2})\breve{\varvec{\mu }}_{T-t+1} &{} \quad \text {for}\quad t=2,\ldots ,T\\ \end{array} \right. . \end{aligned}$$
(69)

Then the statement of the corollary follows from Proposition 2 if \(\varvec{\varSigma }\) is replaced by \(\varvec{\varSigma }_{T-t+1}\) and \(\breve{\varvec{\mu }}\) by \(\breve{\varvec{\mu }}_{T-t+1}\), and

$$\begin{aligned} \tilde{\gamma }^{-1}=\Big [\frac{1}{\alpha W_{T-t}}\left( \prod \limits _{i=T-t+2}^{T}R_{f,i}\right) ^{-1}-R_{f,T-t+1}\Big ]. \end{aligned}$$

Proof of Theorem 3

The results of Theorem 3 follow Theorem 2 and the application of the Sherman–Morrison formula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodnar, T., Parolya, N. & Schmid, W. A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function. Ann Oper Res 229, 121–158 (2015). https://doi.org/10.1007/s10479-015-1802-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1802-z

Keywords

Navigation