Skip to main content
Log in

Robust generalized eigenvalue classifier with ellipsoidal uncertainty

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Uncertainty is a concept associated with data acquisition and analysis, usually appearing in the form of noise or measure error, often due to some technological constraint. In supervised learning, uncertainty affects classification accuracy and yields low quality solutions. For this reason, it is essential to develop machine learning algorithms able to handle efficiently data with imprecision. In this paper we study this problem from a robust optimization perspective. We consider a supervised learning algorithm based on generalized eigenvalues and we provide a robust counterpart formulation and solution in case of ellipsoidal uncertainty sets. We demonstrate the performance of the proposed robust scheme on artificial and benchmark datasets from University of California Irvine (UCI) machine learning repository and we compare results against a robust implementation of Support Vector Machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aeberhard, S., Coomans, D., & De Vel, O. (1992a). Comparison of classifiers in high dimensional settings. Tech. Rep. Dept. Math. Statist., James Cook Univ. North Queensland, Australia

  • Aeberhard, S., Coomans, D., & De Vel, O. (1992b). The classification performance of RDA, Cambridge. Tech. Rep. (pp. 92–01). Dept. of Computer Science/Dept. of Mathematics and Statistics, James Cook University of North Queensland

  • Andersen, M. S., Dahl, J., Liu, Z., & Vandenberghe, L. (2011). Interior-point methods for large-scale cone programming. Optimization for machine learning. Cambridge: MIT Press.

    Google Scholar 

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. S. (2009). Robust optimization. Princeton: Princeton University Press.

    Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769–805.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1–14.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming, 88(3), 411–424.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. S. (2002). Robust optimization—methodology and applications. Mathematical Programming, 92(3), 453–480.

    Article  Google Scholar 

  • Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review 53(3), 464–501.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.

    Article  Google Scholar 

  • Caramanis, C., Mannor, S., & Xu, H. (2011). Robust optimization in machine learning. In S. Sra, S. Nowozin, & S. J. Wright (Eds.), Optimization for machine learning (pp. 369–402). Cambridge: MIT Press.

    Google Scholar 

  • Cifarelli, C., Guarracino, M. R., Seref, O., Cuciniello, S., & Pardalos, P. M. (2007). Incremental classification with generalized eigenvalues. Journal of Classification, 24(2), 205–219.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • D’Aspremont, A., Ghaoui, L., Jordan, M., & Lanckriet, G. (2004). A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49(3), 434–448.

    Article  Google Scholar 

  • El Ghaoui, L., & Lebret, H. (1997). Robust solutions to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications, 18, 1035–1064.

    Article  Google Scholar 

  • El Ghaoui, L., Oustry, F., Lebret, H., et al. (1998). Robust solutions to uncertain semidefinite programs. SIAM Journal on Optimization, 9, 33–52.

    Article  Google Scholar 

  • Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines. Advances in Computational Mathematics, 13(1), 1–50.

    Article  Google Scholar 

  • Fisher, R., et al. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.

    Article  Google Scholar 

  • Frank, A., & Asuncion, A. (2010). UCI machine learning repository. http://archive.ics.uci.edu/ml.

  • Guarracino, M. R., Cifarelli, C., Seref, O., & Pardalos, P. M. (2007). A classification method based on generalized eigenvalue problems. Optimization Methods & Software, 22(1), 73–81.

    Article  Google Scholar 

  • Huber, P., & Ronchetti, E. (1981). MyiLibrary: robust statistics (Vol. 1). Hoboken: Wiley Online Library.

    Book  Google Scholar 

  • Hubert, M., Rousseeuw, P., & Vanden Branden, K. (2005). ROBPCA: a new approach to robust principal component analysis. Technometrics, 47(1), 64–79.

    Article  Google Scholar 

  • Irpino, A., Guarracino, M. R., & Verde, R. (2010). Multiclass generalized eigenvalue proximal support vector machines. In 4th IEEE conference on complex, intelligent and software intensive systems (CISIS 2010). (pp. 25–32). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Kim, S. J., & Boyd, S. (2008). A minimax theorem with applications to machine learning, signal processing, and finance. SIAM Journal on Optimization, 19(3), 1344–1367.

    Article  Google Scholar 

  • Kim, S. J., Magnani, A., & Boyd, S. (2006). Robust fisher discriminant analysis. Advances in Neural Information Processing Systems, 18, 659.

    Google Scholar 

  • Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 69–74.

    Article  Google Scholar 

  • Musicant, D. R. (1998). NDC: normally distributed clustered datasets. http://www.cs.wisc.edu/dmi/svm/ndc/.

  • Pothin, J., & Richard, C. (2006). Incorporating prior information into support vector machines in the form of ellipsoidal knowledge sets. Citeseer.

  • Shahbazpanahi, S., Gershman, A., Luo, Z., & Wong, K. (2003). Robust adaptive beamforming using worst-case SINR optimization: a new diagonal loading-type solution for general-rank signal models. In 2003 IEEE international conference on acoustics, speech, and signal processing. Proceedings (ICASSP’03) (Vol. 5). New York: IEEE Press.

    Google Scholar 

  • Shivaswamy, P., Bhattacharyya, C., & Smola, A. (2006). Second order cone programming approaches for handling missing and uncertain data. The Journal of Machine Learning Research, 7, 1283–1314.

    Google Scholar 

  • Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., & Johannes, R. S. (1988). Using the adap learning algorithm to forecast the onset of diabetes mellitus. Johns Hopkins APL Technical Digest, 10, 262–266.

    Google Scholar 

  • Smola, A. J., Schölkopf, B., & Müller, K. R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11(4), 637–649.

    Article  Google Scholar 

  • Song, Q., Hu, W., & Xie, W. (2002). Robust support vector machine with bullet hole image classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 32(4), 440–448.

    Article  Google Scholar 

  • Trafalis, T. B., & Gilbert, R. C. (2006). Robust classification and regression using support vector machines. European Journal of Operational Research, 173(3), 893–909.

    Article  Google Scholar 

  • Trafalis, T. B., & Gilbert, R. C. (2007). Robust support vector machines for classification and computational issues. Optimization Methods & Software, 22(1), 187–198.

    Article  Google Scholar 

  • Vandenberghe, L. (2010). The CVXOPT linear and quadratic cone program solvers.

  • Vapnik, V. N. (1999). The nature of statistical learning theory. Information science and statistics. Berlin: Springer.

    Google Scholar 

  • Verdú, S., & Poor, H. (2002). On minimax robustness: a general approach and applications. IEEE Transactions on Information Theory, 30(2), 328–340.

    Article  Google Scholar 

  • Xanthopoulos, P., Pardalos, P. M., & Trafalis, T. B. (2012). Robust data mining. New York: Springer.

    Google Scholar 

  • Xu, H., Caramanis, C., & Mannor, S. (2009). Robustness and regularization of support vector machines. Journal of Machine Learning Research, 10, 1485–1510.

    Google Scholar 

  • Xu, H., Caramanis, C., & Mannor, S. (2010). Robust regression and lasso. IEEE Transactions on Information Theory, 56(7), 3561–3574.

    Article  Google Scholar 

Download references

Acknowledgements

This project was partially funded by National Science Foundation (N.S.F.) grants and Italian Flagship Project Interomics funded by MIUR and CNR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos M. Pardalos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xanthopoulos, P., Guarracino, M.R. & Pardalos, P.M. Robust generalized eigenvalue classifier with ellipsoidal uncertainty. Ann Oper Res 216, 327–342 (2014). https://doi.org/10.1007/s10479-012-1303-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1303-2

Keywords

Navigation