Skip to main content
Log in

Optimal solutions for a dock assignment problem with trailer transportation

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper presents a model for a dock assignment problem, where trailers need to be assigned to gates for a given period of time for loading or unloading activities. The parking lot is used as a buffer zone. Transportation between the parking lot and the gates is performed by additional resources called terminal tractors. The problem is modeled as a three-stage flexible flow shop, where the first and the third stage share the same identical parallel machines and the second stage consists of a different set of identical parallel machines. We examine multiple integer-programming formulations for the parallel-machine model in stage two and for the three-stage flow shop and we provide extensive computational results. Our goal is to explore the limits of the instance sizes that can be solved to guaranteed optimality within acceptable running times using integer programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Artigues, C., Demassey, S., & Néron, E. (2008). Control systems, robotics and manufacturing series. Resource-constrained project scheduling. London: ISTE Ltd.

    Book  Google Scholar 

  • Bard, J. F., & Rojanasoonthon, S. (2006). A branch-and-price algorithm for parallel machine scheduling with time windows and job priorities. Naval Research Logistics, 53, 24–44.

    Article  Google Scholar 

  • Berghman, L., Leus, R., & Spieksma, F. C. R. (2010). Optimal solutions for a dock assignment problem with trailer transportation (Working Paper KBI-1010). Department of Decision Sciences and Information Management (KBI), Faculty of Business and Economics, KULeuven, Leuven (Belgium).

  • Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202, 615–627.

    Article  Google Scholar 

  • Bigras, L., Gamache, M., & Savard, G. (2008). Time-indexed formulations and the total weighted tardiness problem. INFORMS Journal on Computing, 20(1), 133–142.

    Article  Google Scholar 

  • Bish, E. K., Leong, T., Li, C., Ng, J. W. C., & Simchi-Levi, D. (2001). Analysis of a new vehicle scheduling and location problem. Naval Research Logistics, 48, 363–385.

    Article  Google Scholar 

  • Bish, E. K., Chen, F. Y., Leong, Y. T., Nelson, B. L., Ng, J. W. C., & Simchi-Levi, D. (2005). Dispatching vehicles in a mega container terminal. OR-Spektrum, 27, 491–506.

    Article  Google Scholar 

  • Blazewicz, J., Dror, M., & Weglarz, J. (1991). Mathematical programming formulations for machinery scheduling: a survey. European Journal of Operational Research, 51, 283–300.

    Article  Google Scholar 

  • Böse, J., Reiners, T., Steenken, D., & Voss, S. (2000). Vehicle dispatching at seaport container terminals using evolutionary algorithms. In Proceedings of the 33rd Hawaii international conference on system sciences (pp. 1–10).

    Google Scholar 

  • Boysen, N., Fliedner, M., & Scholl, A. (2010). Scheduling inbound and outbound trucks at cross docking terminals. OR-Spektrum, 32, 135–161.

    Article  Google Scholar 

  • Chen, J. S., Pan, J. C. H., & Wu, C. K. (2007). Minimizing makespan in reentrant flow-shops using hybrid tabu search. The International Journal of Advanced Manufacturing Technology, 34, 353–361.

    Article  Google Scholar 

  • Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research, 47, 271–292.

    Article  Google Scholar 

  • Cheong, C. Y., Tan, K. C., Liu, D. K., & Lin, C. J. (2010). Multi-objective and prioritized berth allocation in container ports. Annals of Operations Research, 180, 63–103.

    Article  Google Scholar 

  • Choi, S. W., & Kim, Y. D. (2008). Minimizing makespan on an m-machine re-entrant flowshop. Computers & Operations Research, 35, 1684–1696.

    Article  Google Scholar 

  • Christofides, N., Alvarez-Valdés, R., & Tamarit, J. M. (1987). Project scheduling with resource constraints: a branch-and-bound approach. European Journal of Operational Research, 29(3), 262–273.

    Article  Google Scholar 

  • Crama, Y., & Spieksma, F. C. R. (1996). Scheduling jobs of equal length: complexity, facets and computational results. Mathematical Programming, 72, 207–227.

    Google Scholar 

  • Dallery, Y., & Gershwin, S. B. (1992). Manufacturing flow line systems: a review of models and analytical results. Queueing Systems, 12, 3–94.

    Article  Google Scholar 

  • Dessouky, M. M. (1998). Scheduling identical jobs with unequal ready times on uniform parallel machines to minimize the maximum lateness. Computers and Industrial Engineering, 34(4), 793–806.

    Article  Google Scholar 

  • Dyer, M. E., & Wolsey, L. A. (1990). Formulating the single machine sequencing problem with release dates as a mixed integer problem. Discrete Applied Mathematics, 26, 255–270.

    Article  Google Scholar 

  • Graves, S. C., Meal, H. C., Stefeka, D., & Zeghmi, A. H. (1983). Scheduling of re-entrant flow shops. Journal of Operations Management, 3(4), 197–207.

    Article  Google Scholar 

  • Guan, Y., Yang, K. H., & Zhou, Z. (2010). The crane scheduling problem: models and solution approaches. Annals of Operations Research. doi:10.1007/s10479-010-0765-3.

    Google Scholar 

  • Gupta, J. N. C., Krüger, K., Lauff, V., Werner, F., & Sotskov, Y. N. (2002). Heuristics for hybrid flow shops with controllable processing times and assignable due dates. Computers & Operations Research, 29, 1417–1439.

    Article  Google Scholar 

  • Gupta, J. N. D., Hairiri, A. M. A., & Potts, C. N. (1997). Scheduling a two-stage hybrid flow shop with parallel machines at the first stage. Annals of Operations Research, 69, 171–191.

    Article  Google Scholar 

  • Haouari, M., Hidri, L., & Gharbi, A. (2006). Optimal scheduling of a two-stage hybrid flow shop. Mathematical Methods of Operations Research, 64, 107–124.

    Article  Google Scholar 

  • ILOG (2008). ILOG. CPLEX, 11, 0 user’s manual. ILOG, Inc., available online at http://www.decf.berkeley.edu/help/apps/ampl/cplex-doc/.

  • Jain, V., & Grossmann, I. E. (2001). Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS Journal on Computing, 13(4), 258–276.

    Article  Google Scholar 

  • Kedad-Sidhoum, S., Solis, Y. R., & Sourd, F. (2008). Lower bounds for the earliness-tardiness scheduling problem on parallel machines with distinct due dates. European Journal of Operational Research, 189, 1305–1316.

    Article  Google Scholar 

  • Kis, T., & Pesch, E. (2005). A review of exact solution methods for the non-preemptive multiprocessor flowshop problem. European Journal of Operational Research, 164, 592–608.

    Article  Google Scholar 

  • Kise, H., Shioyama, T., & Ibaraki, T. (1991). Automated two-machine flow-shop scheduling: a solvable case. IIE Transactions, 23(1), 10–16.

    Article  Google Scholar 

  • Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine scheduling problems. Annals of Discrete Mathematics, 1, 343–362.

    Article  Google Scholar 

  • Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: a survey. Computers and Industrial Engineering, 37, 57–61.

    Article  Google Scholar 

  • Mellouli, R., Sadfi, C., Chu, C., & Kacem, I. (2009). Identical parallel-machine scheduling under availability constraints to minimize the sum of completion times. European Journal of Operational Research, 179, 1150–1165.

    Article  Google Scholar 

  • Miao, Z., Lim, A., & Ma, H. (2009). Truck dock assignment problem with operational time constraint within crossdocks. European Journal of Operational Research, 192, 105–115.

    Article  Google Scholar 

  • Moursli, O., & Pochet, Y. (2000). A branch-and-bound algorithm for the hybrid flowshop. International Journal of Production Economics, 64, 113–125.

    Article  Google Scholar 

  • Nichi, T., Hiranaka, Y., & Inuiguchi, M. (2010). Lagrangian relaxation with cut generation for hybrid flowshop scheduling problems to minimize the total weighted tardiness. Computers & Operations Research, 37, 189–198.

    Article  Google Scholar 

  • Paternina-Arboleda, C. D., Montoya-Torres, J. R., Acero-Domingues, M. J., & Herrera-Hernandez, M. C. (2008). Scheduling jobs on a k-stage flexible flow-shop. Annals of Operations Research, 164, 29–40.

    Article  Google Scholar 

  • Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37, 1439–1454.

    Article  Google Scholar 

  • Sadykov, R., & Wolsey, L. A. (2006). Integer programming and constraint programming in solving a multimachine assignment scheduling problem with deadlines and release dates. INFORMS Journal on Computing, 18(2), 209–217.

    Article  Google Scholar 

  • Sousa, J. P., & Wolsey, L. A. (1992). A time indexed formulation of non-preemptive single machine scheduling problems. Mathematical Programming, 54, 353–367.

    Article  Google Scholar 

  • Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: a literature update. OR-Spektrum, 30, 1–52.

    Article  Google Scholar 

  • Tang, L., & Xuan, H. (2006). Lagrangian relaxation algorithms for real-time hybrid flowshop scheduling with finite intermediate buffers. The Journal of the Operational Research Society, 57, 316–324.

    Article  Google Scholar 

  • Uetz, M. (2001). Algorithms for deterministic and stochastic scheduling. PhD thesis, Technische Universität Berlin, Germany.

  • van den Akker, J. M. (1994). LP-based solution methods for single-machine scheduling problems. PhD thesis, Technische Universiteit Eindhoven, the Netherlands.

  • van den Akker, J. M., Hurkens, C. A. J., & Savelsbergh, M. W. P. (2000). Time-indexed formulations for machine scheduling problems: column generation. INFORMS Journal on Computing, 12(2), 111–124.

    Article  Google Scholar 

  • Vignier, A., Billaut, J. C., & Proust, C. (1999). Hybrid flowshop scheduling problems: state of the art. RAIRO Operations Research, 33(2), 117–183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotte Berghman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berghman, L., Leus, R. & Spieksma, F.C.R. Optimal solutions for a dock assignment problem with trailer transportation. Ann Oper Res 213, 3–25 (2014). https://doi.org/10.1007/s10479-011-0971-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0971-7

Keywords

Navigation