Skip to main content
Log in

Robustness in stochastic programs with risk constraints

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper is a contribution to the robustness analysis for stochastic programs whose set of feasible solutions depends on the probability distribution P. For various reasons, probability distribution P may not be precisely specified and we study robustness of results with respect to perturbations of P. The main tool is the contamination technique. For the optimal value, local contamination bounds are derived and applied to robustness analysis of the optimal value of a portfolio performance under risk-shaping CVaR constraints. A new robust portfolio efficiency test with respect to the second order stochastic dominance criterion is suggested and the contamination methodology is exploited to analyze its resistance with respect to additional scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonnans, J. S., & Shapiro, A. (2000). Perturbation analysis of optimization problems. Springer series in OR. New York.

    Google Scholar 

  • Dentcheva, D., & Ruszczyński, A. (2010). Robust stochastic dominance and its application to risk-averse optimization. Mathematical Programming, 123, 85–100.

    Article  Google Scholar 

  • Dupačová, J. (1990). Stability and sensitivity analysis for stochastic programming. Annals of Operations Research, 27, 115–142.

    Article  Google Scholar 

  • Dupačová, J. (1996). Scenario-based stochastic programs: resistance with respect to sample. Annals of Operations Research, 64, 21–38.

    Article  Google Scholar 

  • Dupačová, J. (1998). Reflections on robust optimization. In K. Marti & P. Kall (Eds.), LNEMS: Vol. 458. Stochastic programming methods and technical applications (pp. 111–127). Berlin: Springer.

    Chapter  Google Scholar 

  • Dupačová, J. (2006). Stress testing via contamination. In K. Marti et al. (Ed.), LNEMS: Vol. 581. Coping with uncertainty, modeling and policy issues (pp. 29–46). Berlin: Springer.

    Chapter  Google Scholar 

  • Dupačová, J. (2008). Risk objectives in two-stage stochastic programming models. Kybernetika, 44, 227–242.

    Google Scholar 

  • Dupačová, J., & Polívka, J. (2007). Stress testing for VaR and CVaR. Quantitative Finance, 7, 411–421.

    Article  Google Scholar 

  • Fiacco, A. (1983). Introduction to sensitivity and stability analysis in nonlinear programming. New York: Academic Press.

    Google Scholar 

  • Gol’shtein, E. G. (1970). Vypukloje programmirovanije. Elementy teoriji. Moscow: Nauka. [Theory of convex programming, translations of mathematical monographs, Vol. 36, American Mathematical Society, Providence, 1972].

    Google Scholar 

  • Kilianová, S., & Pflug, G. (2009). Optimal pension fund management under multi-period risk minimization. Annals of Operations Research, 166, 261–270.

    Article  Google Scholar 

  • Kopa, M. (2010). Measuring of second-order stochastic dominance portfolio efficiency. Kybernetika, 46, 488–500.

    Google Scholar 

  • Kopa, M., & Chovanec, P. (2008). A second-order stochastic dominance portfolio efficiency measure. Kybernetika, 44, 243–258.

    Google Scholar 

  • Krokhmal, P., Palmquist, J., & Uryasev, S. (2002). Portfolio optimization with conditional-value-at-risk objective and constraints. The Journal of Risk, 2, 11–27.

    Google Scholar 

  • Kuosmanen, T. (2004). Efficient diversification according to stochastic dominance criteria. Management Science, 50, 1390–1406.

    Article  Google Scholar 

  • Kyparisis, J., & Fiacco, A. (1987). Generalized convexity and concavity of the optimal value function in nonlinear programming. Mathematical Programming, 39, 285–304.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (2002). Dual stochastic dominance and related mean-risk models. SIAM Journal on Optimization, 13, 60–78.

    Article  Google Scholar 

  • Pagoncelli, B. K., Ahmed, S., & Shapiro, A. (2009). Sample average approximation method for chance constrained programming: theory and applications. Journal of Optimization Theory and Applications, 142, 399–416.

    Article  Google Scholar 

  • Pflug, G., & Wozabal, D. (2007). Ambiguity in portfolio selection. Quantitative Finance, 7, 435–442.

    Article  Google Scholar 

  • Prékopa, A. (1973). Contributions to the theory of stochastic programming. Mathematical Programming, 4, 202–221.

    Article  Google Scholar 

  • Prékopa, A. (2003), Probabilistic programming, Chap. 5 in Ruszczyński and Shapiro (2003) (pp. 267–351).

  • Robinson, S. M. (1987). Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity. Mathematical Programming Studies, 30, 45–66.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26, 1443–1471.

    Article  Google Scholar 

  • Römisch, W. (2003). Stability of stochastic programming problems. Chap. 8 in Ruszczyński and Shapiro (2003) (pp. 483–554).

  • Ruszczyński, A., & Shapiro, A. (Eds.) (2003). Stochastic programming. Handbooks in OR & MS, Vol. 10. Amsterdam: Elsevier.

    Google Scholar 

  • Ruszczyński, A., & Vanderbei, R. J. (2003). Frontiers of stochastically nondominated portfolios. Econometrica, 71, 1287–1297.

    Article  Google Scholar 

  • Shapiro, A. (2003). Monte Carlo sampling methods, Chap. 6 in Ruszczyński and Shapiro (2003) (pp. 353–425).

  • Wang, W., & Ahmed, S. (2008). Sample average approximation for expected value constrained stochastic programs. OR Letters, 36, 515–519.

    Google Scholar 

  • Wets, R. J.-B. (1989). Stochastic programming. In G. L. Nemhauser et al. (Ed.), Handbooks in OR & MS: Vol. 1. Optimization (pp. 573–629). Amsterdam: Elsevier. Chap. VIII.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitka Dupačová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupačová, J., Kopa, M. Robustness in stochastic programs with risk constraints. Ann Oper Res 200, 55–74 (2012). https://doi.org/10.1007/s10479-010-0824-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0824-9

Keywords

Navigation