Skip to main content
Log in

Unique local determination of convex bodies

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Barker and Larman asked the following. Let \({K' \subset {\mathbb{R}}^d}\) be a convex body, whose interior contains a given convex body \({K \subset {\mathbb{R}}^d}\), and let, for all supporting hyperplanes H of K, the (d − 1)-volumes of the intersections \({K' \cap H}\) be given. Is K′ then uniquely determined? Yaskin and Zhang asked the analogous Question when, for all supporting hyperplanes H of K, the d-volumes of the “caps” cut off from K′ by H are given. We give local positive answers to both of these questions, for small C 2-perturbations of K, provided the boundary of K is C 2+ . In both cases, (d − 1)-volumes or d-volumes can be replaced by k-dimensional quermassintegrals for \({1 \le k \le d-1}\) or for \({1 \le k \le d}\), respectively. Moreover, in the first case we can admit, rather than hyperplane sections, sections by l-dimensional affine planes, where \({1 \le k \le l \le d-1}\). In fact, here not all l-dimensional affine subspaces are needed, but only a small subset of them (actually, a (d − 1)-manifold), for unique local determination of K′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitchison P.W., Petty C.M., Rogers C.A.: A convex body with a false centre is an ellipsoid. Mathematika, 18, 50–59 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barker J.A., Larman D.G.: Determination of convex bodies by certain sets of sectional volumes. Discrete Math., 241, 79–96 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Falconer K.: X-ray problems for point sources Proc. London Math. Soc.(3) 46, 241–262 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gardner R.J.: Symmetrals and X-rays of planar convex bodies. Arch. Math. (Basel), 41, 183–189 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. J. Gardner, Geometric Tomography, second edition, Encyclopedia of Math. and its Appl. 58, Cambridge Univ. Press (Cambridge, 2006).

  6. V. Gorkavyy and D. Kalinin, Barker–Larman problem in the hyperbolic plane, Results Math., 68, 519–525 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Groemer, Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia of Math. and its Appl. 61, Cambridge Univ. Press (Cambridge, 1996).

  8. Hammer P.C.: Diameters of convex bodies. Proc. Amer. Math. Soc., 5, 304–306 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jerónimo-Castro J., McAllister T.B.: Two characterizations of ellipsoidal cones. J. Convex Anal., 20, 1181–1187 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Larman D.G.: A note on the false centre theorem. Mathematika, 21, 216–227 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Larman D.G., Morales-Amaya E.: On the false pole problem. Monatsh Math., 151, 271–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Makai E. Jr., Martini H.: Centrally symmetric convex bodies and sections having maximal quermassintegrals. Studia Sci. Math. Hungar., 49, 189–199 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Makai E. Jr., Martini H., Ódor T.: Maximal sections and centrally symmetric convex bodies. Mathematika, 47, 17–30 (2000)

    Article  MATH  Google Scholar 

  14. Montejano L., Morales-Amaya E.: Variations of classic characterizations of ellipsoids and a short proof of the false centre theorem. Mathematika, 54, 35–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Ryabogin, V. Yaskin and A. Zvavitch, Harmonic analysis and uniqueness questions in convex geometry, in: Recent Advances in Harmonic Analysis and Applications, (eds. D. Bilyk et al.), Springer Proc. Math. Stat. 25, Springer (New York, 2013), pp. 327–337.

  16. Santaló L.A.: Two characteristic properties of circles on a spherical surface (Spanish). Math. Notae, 11, 73–78 (1951)

    MathSciNet  Google Scholar 

  17. R. Schneider, Convex Bodies: the Brunn–Minkowski Theory, second expanded edition, Encyclopedia of Math. and its Appl., 151, Cambridge Univ. Press (Cambridge, 2014).

  18. Soltan V.: Convex hypersurfaces with hyperplanar intersections of their homothetic copies. J. Convex Anal., 22, 145–159 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Xiong G., Ma Y.-W., Cheung W.-S.: Determination of convex bodies from \({\Gamma}\)-section functions. J. Shanghai Univ., 12, 200–203 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yaskin V.: Unique determination of convex polytopes by non-central sections. Math. Ann., 349, 647–655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Yaskin and N. Zhang, Non-central sections of convex bodies, http://arxiv.org/abs/1509.08174.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Makai Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makai, E., Martini, H. Unique local determination of convex bodies. Acta Math. Hungar. 150, 176–193 (2016). https://doi.org/10.1007/s10474-016-0640-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-016-0640-z

Key words and phrases

Mathematics Subject Classification

Navigation