Skip to main content
Log in

Multivariate polynomial inequalities of different \({L_{p,W}(V)}\)-metrics with k-concave weights

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let W be a k-concave weight on an open convex set V in \({{\mathbb R}^m}\), \({k \in [0, \infty]}\), and let \({\mu_W}\) be the weighted measure on V generated by W with \({\mu_W(V) < \infty}\). We find lower and upper estimates of a constant A in the inequality (\({0 \leqq p < q \leqq \infty}\))

$$\begin{array}{ll}\bigg(\frac{1}{\mu_W(V)}\int_V \big|P(x)\big|^{q} W(x) \, dx \bigg)^{1/q} \\ \leqq A(n, m, p, q, V, W)\bigg(\frac{1}{\mu_W(V)}\int_V \big|P(x)\big|^p W(x) \, dx\bigg)^{1/p},\end{array}$$

where P is a polynomial of m variables of degree at most n. In the case of log-concave measures (k =  0) we improve estimates of A obtained by A. Brudnyi. For \({k \in (0, \infty]}\) estimates of A are new, and we show that they are sharp with respect to n as \({n \to \infty}\). The proofs are based on distributional inequalities for polynomials obtained by Nazarov, Sodin, Volberg, and Fradelizi. Two new examples for a generalized Jacobi weight on [−1, 1] and a multivariate Gegenbauer-type weight on a convex body are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bobkov S. G.: Remarks on the growth of L p-norms of polynomials. Springer Lecture Notes in Math. 1745, 27–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bobkov S. G.: Large deviations and isoperimetry over convex probability measures with heavy tails. Electron. J. Prob. 12, 1072–1100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. G. Bobkov and F. L. Nazarov, Sharp dilation-type inequalities with fixed parameter of convexity, Zap. Nauchn. Sem. POMI, 351 (2007), 54–78. Reprinted in J. Math. Sci. (N.Y.), 152 (2008), 826–839.

  4. Borell C.: Convex set functions in d-space. Period. Math. Hungar. 6, 111–136 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borwein P., Erdélyi T.: Polynomials and Polynomial Inequalities. Springer-Verlag, (New York, 1995)

    Book  MATH  Google Scholar 

  6. Bourgain J.: On the distribution of polynomials on high dimensional convex sets. Springer Lecture Notes in Math. 1469, 127–137 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brudnyi A.: L q norm inequalities for analytic functions revisited. J. Approx. Theory 179, 24–32 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yu. A. Brudnyi and M. I. Ganzburg, On an extremal problem for polynomials in n variables, Izv. Akad. Nauk SSSR, 37(2) (1973), 344–355 (Russian). English translation in Math. USSR-Izv., 7(2) (1973), 345–356.

  9. Carbery A., Wright J.: Distributional and L q norm inequalities for polynomials over convex bodies in \({{\mathbb R}^n}\). Math. Res. Lett. 8, 233–248 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  10. K. M. Chong and N. M. Rice, Equimeasurable Rearrangements of Functions, Queen’s University (Kingston, Ontario, Canada, 1971).

  11. I. K. Daugavet, On Markov–Nikolskii-type inequalities for algebraic polynomials in the multidimensional case, Dokl. Akad. Nauk SSSR, 207 (1972), 521–522 (Russian). English translation in Soviet Math. Dokl., 13 (1972), 1548–1550.

  12. Daugavet I. K.: Some inequalities for polynomials in the multidimensional case. Numer. Methods (Leningrad. Univ.) 10, 3–26 (1976) (in Russian)

    MathSciNet  Google Scholar 

  13. Daugavet I. K., Rafalson C.Z.: Some Markov- and Nikolskii-type inequalities for algebraic polynomials. Vestnik Leningrad. Univ. 1, 15–25 (1972) (in Russian)

    MathSciNet  Google Scholar 

  14. Daugavet I. K., Rafalson C. Z.: On some inequalities for algebraic polynomials. Vestnik Leningrad. Univ. 19, 15–25 (1974) (in Russian)

    MathSciNet  Google Scholar 

  15. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill (New York, 1953).

  16. Fradelizi M.: Concentration inequalities for s-concave measures of dilations of Borel sets and applications. Electron. J. Prob. 14, 2068–2090 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ganzburg M.I.: An exact inequality for the increasing rearrangement of a polynomial in m variables. Teor. Funktsiĭ., Funktsional Anal. i Prilozhen. (Kharkiv) 31, 16–24 (1979) (in Russian)

    MathSciNet  Google Scholar 

  18. Ganzburg M. I.: Polynomial inequalities on measurable sets and their applications II. Weighted measures. J. Approx. Theory 106, 77–109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ganzburg M.I.: Polynomial inequalities on measurable sets and their applications. Constr. Approx. 17, 275–306 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. I. Ganzburg, Polynomial inequalities on sets with k m -concave weighted measures, J. d’Analyse Math., accepted.

  21. M. Gromov and V. Milman, Brunn theorem and a concentration of volume for convex bodies, GAFA seminar (1983/1984), Tel Aviv Univ. (Tel Aviv, 1984), 12 pp.

  22. Guédon O., Nayar P., Tkocz T.: Concentration inequalities and geometry of convex bodies. IM PAN Lecture Notes 2, 9–86 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Hardy G. H., Littlewood J. E., Pólya G.: Inequalities, 2nd edition. Cambridge Univesrsity Press, (Cambridge, 1952)

    MATH  Google Scholar 

  24. Kannan R., Lovász L., Simonovits M.: Isoperimetric problem for convex bodies and a localization lemma. Discrete and Comput. Geometry 13, 541–559 (1995)

    Article  MATH  Google Scholar 

  25. S. V. Konyagin, Bounds on the derivatives of polynomials, Dokl. Akad. Nauk SSSR, 243 (1978), 1116–1118 (Russian). English translation in Soviet Math. Dokl., 19 (1978), 1477–1480.

  26. Kroó A., Schmidt D.: Some extremal problems for multivariate polynomials on convex bodies. J. Approx. Theory 90, 415–434 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lebed G. K.: Inequalities for polynomials and their derivatives. Dokl. Akad. Nauk SSSR 117, 570–572 (1957) (in Russian)

    MathSciNet  MATH  Google Scholar 

  28. Lebed G. K.: Some inequalities for trigonometric and algebraic polynomials and their derivatives. Trudy MIAN SSSR 134, 142–160 (1975) (in Russian)

    MathSciNet  Google Scholar 

  29. G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific (Singapore, 1994).

  30. F. Nazarov, M. Sodin and A. Volberg, The geometric KLS lemma, dimension free estimates for the distribution of values of polynomials and distribution of zeros of random analytic functions, Algebra i Analiz, 14 (2002), 214–234 (in Russian). English translation in St. Petersburg Math. J., 14 (2003), 351–366.

  31. M. K. Potapov, Some inequalities for polynomials and their derivatives, Vestnik Moskov. Univ., Ser. I Mat. Mekh., no. 2 (1960), 10–20 (in Russian).

  32. O. I. Prudnikov, A. P. Brychkov and Yu. A. Marichev, Integrals and Series, Vol. I: Elementary Functions, CRC Press (Boca Raton, FL, 1998).

  33. R. T. Rockafellar, Convex Analysis, Princeton University Press (Princeton, 1970).

  34. A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press (New York, 1963).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Ganzburg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganzburg, M.I. Multivariate polynomial inequalities of different \({L_{p,W}(V)}\)-metrics with k-concave weights. Acta Math. Hungar. 150, 99–120 (2016). https://doi.org/10.1007/s10474-016-0632-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-016-0632-z

Key words and phrases

Mathematics Subject Classification

Navigation