Skip to main content
Log in

Challenges to complexity shields that are supposed to protect elections against manipulation and control: a survey

Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In the context of voting, manipulation and control refer to attempts to influence the outcome of elections by either setting some of the votes strategically (i.e., by reporting untruthful preferences) or by altering the structure of elections via adding, deleting, or partitioning either candidates or voters. Since by the celebrated Gibbard–Satterthwaite theorem (and other results expanding its scope) all reasonable voting systems are manipulable in principle and since many voting systems are in principle susceptible to many control types modeling natural control scenarios, much work has been done to use computational complexity as a shield to protect elections against manipulation and control. However, most of this work has merely yielded NP-hardness results, showing that certain voting systems resist certain types of manipulation or control only in the worst case. Various approaches, including studies of the typical case (where votes are given according to some natural distribution), pose serious challenges to such worst-case complexity results and might allow successful manipulation or control attempts, despite the NP-hardness of the corresponding problems. We survey and discuss some recent results on these challenges to complexity results for manipulation and control, including typical-case analyses and experiments, fixed-parameter tractability, domain restrictions (single-peakedness), and approximability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Baldwin, J.: The technique of the Nanson preferential majority system of election. Proc. R. Soc. Vic. 39, 42–52 (1926)

    Google Scholar 

  2. Ballester, M., Haeringer, G.: A characterization of the single-peaked domain. Soc. Choice Welf. 36(2), 305–322 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartholdi III, J., Orlin, J.: Single transferable vote resists strategic voting. Soc. Choice Welf. 8(4), 341–354 (1991)

    MATH  MathSciNet  Google Scholar 

  4. Bartholdi III, J., Tovey, C., Trick, M.: The computational difficulty of manipulating an election. Soc. Choice Welf. 6(3), 227–241 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bartholdi III, J., Tovey, C., Trick, M.: Voting schemes for which it can be difficult to tell who won the election. Soc. Choice Welf. 6(2), 157–165 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartholdi III, J., Tovey, C., Trick, M.: How hard is it to control an election? Math. Comput. Model. 16(8–9), 27–40 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Computational aspects of approval voting. In: Laslier, J., Sanver, R. (eds.) Handbook on Approval Voting, chap. 10, pp. 199–251. Springer (2010)

  8. Berg, S.: Paradox of voting under an urn model: the effect of homogeneity. Public Choice 47(2), 377–387 (1985)

    Article  Google Scholar 

  9. Betzler, N.: On problem kernels for possible winner determination under the k-approval protocol. In: Proceedings of the 35th International Symposium on Mathematical Foundations of Computer Science, pp. 114–125. Lecture Notes in Computer Science #6281. Springer-Verlag (2010)

  10. Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in computational aspects of voting—a parameterized complexity perspective. In: Bodlaender et al. H. (ed.) Fellows Festschrift, pp. 318–363. Lecture Notes in Computer Science #7370. Springer-Verlag (2012)

  11. Betzler, N., Guo, J., Niedermeier, R.: Parameterized computational complexity of Dodgson and Young elections. In: Proceedings of the 11th Scandinavian Workshop on Algorithm Theory, pp. 402–413. Lecture Notes in Computer Science #5124. Springer-Verlag (2008)

  12. Betzler, N., Hemmann, S., Niedermeier, R.: A multivariate complexity analysis of determining possible winners given incomplete votes. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 53–58. IJCAI (2009)

  13. Betzler, N., Niedermeier, R., Woeginger, G.: Unweighted coalitional manipulation under the Borda rule is NP-hard. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 55–60. IJCAI (2011)

  14. Betzler, N., Uhlmann, J.: Parameterized complexity of candidate control in elections and related digraph problems. In: Proceedings of the 2nd Annual International Conference on Combinatorial Optimization and Applications, pp. 43–53. Lecture Notes in Computer Science #5165. Springer-Verlag (2008)

  15. Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56(1), 23–34 (1948)

    Article  Google Scholar 

  16. Brams, S., Fishburn, P.: Approval voting. Am. Polit. Sci. Rev. 72(3), 831–847 (1978)

    Article  Google Scholar 

  17. Brams, S., Sanver, R.: Voting systems that combine approval and preference. In: Brams, S., Gehrlein, W., Roberts, F. (eds.) The Mathematics of Preference, Choice, and Order: Essays in Honor of Peter C. Fishburn, pp. 215–237. Springer (2009)

  18. Brandt, F., Brill, M., Hemaspaandra, E., Hemaspaandra, L.: Bypassing combinatorial protections: polynomial-time algorithms for single-peaked electorates. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 715–722. AAAI Press (2010)

  19. Brelsford, E., Faliszewski, P., Hemaspaandra, E., Schnoor, H., Schnoor, I.: Approximability of manipulating elections. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pp. 44–49 (2008)

  20. Brill, M., Fischer, F.: The price of neutrality for the ranked pairs method. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1299–1305. AAAI Press (2012)

  21. Coleman, T., Teague, V.: On the complexity of manipulating elections. In: Proceedings of Computing: the 13th Australasian Theory Symposium, vol. 65, pp. 25–33 (2007)

  22. Condorcet, J.: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix (1785). Facsimile reprint of original published in Paris, 1972, by the Imprimerie Royale. English translation appears in I. McLean and A. Urken, Classics of Social Choice, pp. 91–112. University of Michigan Press (1995)

  23. Conitzer, V.: Eliciting single-peaked preferences using comparison queries. J. Artif. Intell. Res. 35, 161–191 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Conitzer, V.: Making decisions based on the preferences of multiple agents. Commun. ACM 53(3), 84–94 (2010)

    Article  MathSciNet  Google Scholar 

  25. Conitzer, V., Rognlie, M., Xia, L.: Preference functions that score rankings and maximum likelihood estimation. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 109–115. IJCAI (2009)

  26. Conitzer, V., Sandholm, T.: Universal voting protocol tweaks to make manipulation hard. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 781–788. Morgan Kaufmann (2003)

  27. Conitzer, V., Sandholm, T.: Nonexistence of voting rules that are usually hard to manipulate. In: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 627–634. AAAI Press (2006)

  28. Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard to manipulate? J. ACM 54(3), 14 (2007)

    Article  MathSciNet  Google Scholar 

  29. Copeland, A.: A “reasonable” social welfare function. Mimeographed Notes from a Seminar on Applications of Mathematics to the Social Sciences. University of Michigan (1951)

  30. Davies, J., Katsirelos, G., Narodytska, N., Walsh, T.: Complexity of and algorithms for Borda manipulation. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, pp. 657–662. AAAI Press (2011)

  31. Dobra, J.: An approach to empirical studies of voting paradoxes: an update and extension. Public Choice 41(2), 241–250 (1983)

    Article  Google Scholar 

  32. Dobzinski, S., Procaccia, A.: Frequent manipulability of elections: the case of two voters. In: Proceedings of the 4th International Workshop on Internet and Network Economics, pp. 653–664 (2008)

  33. Dorn, B., Schlotter, I.: Multivariate complexity analysis of swap bribery. In: Proceedings of the 5th International Symposium on Parameterized and Exact Computation, pp. 107–122. Lecture Notes in Computer Science #6478. Springer-Verlag (2010)

  34. Downey, R., Fellows, M.: Parameterized Complexity. Springer-Verlag (1999)

  35. Duggan, J., Schwartz, T.: Strategic manipulability without resoluteness or shared beliefs: Gibbard–Satterthwaite generalized. Soc. Choice Welf. 17(1), 85–93 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Dyer, J., Miles Jr., R.: An actual application of collective choice theory to the selection of trajectories for the mariner Jupiter/Saturn 1977 project. Oper. Res. 24(2), 220–244 (1976)

    Article  MATH  Google Scholar 

  37. Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Proceedings of the 2nd International Symposium on Algorithmic Game Theory, pp. 299–310. Lecture Notes in Computer Science #5814. Springer-Verlag (2009)

  38. Elkind, E., Lipmaa, H.: Hybrid voting protocols and hardness of manipulation. In: Proceedings of the 16th International Symposium on Algorithms and Computation, pp. 206–215. Lecture Notes in Computer Science #3827. Springer-Verlag (2005)

  39. Erdélyi, G., Fellows, M.: Parameterized control complexity in Bucklin voting and in fallback voting. In: Conitzer, V., Rothe, J. (eds.) Proceedings of the 3rd International Workshop on Computational Social Choice, pp. 163–174. Universität Düsseldorf (2010)

  40. Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and fallback voting. Computing Research Repository (2012). Tech. Rep. arXiv:1103.2230 [cs.CC]. March, 2011. Revised August 21, 2012

  41. Erdélyi, G., Hemaspaandra, L., Rothe, J., Spakowski, H.: Frequency of correctness versus average-case polynomial time and generalized juntas. Tech. Rep. TR-934, Department of Computer Science, University of Rochester, Rochester, NY (2008)

  42. Erdélyi, G., Hemaspaandra, L., Rothe, J., Spakowski, H.: Frequency of correctness versus average polynomial time. Inf. Process. Lett. 109(16), 946–949 (2009)

    Article  MATH  Google Scholar 

  43. Erdélyi, G., Hemaspaandra, L., Rothe, J., Spakowski, H.: Generalized juntas and NP-hard sets. Theor. Comput. Sci. 410(38–40), 3995–4000 (2009)

    Article  MATH  Google Scholar 

  44. Erdélyi, G., Nowak, M., Rothe, J.: Sincere-strategy preference-based approval voting fully resists constructive control and broadly resists destructive control. Math. Log. Q. 55(4), 425–443 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  45. Erdélyi, G., Piras, L., Rothe, J.: The complexity of voter partition in Bucklin and fallback voting: solving three open problems. In: Proceedings of the 10th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 837–844. IFAAMAS (2011)

  46. Erdélyi, G., Rothe, J.: Control complexity in fallback voting. In: Proceedings of Computing: the 16th Australasian Theory Symposium, vol. 32, no. 8, pp. 39–48. Conferences in Research and Practice in Information Technology Series. Australian Computer Society (2010)

  47. Escoffier, B., Lang, J., Öztürk, M.: Single-peaked consistency and its complexity. In: Proceedings of the 18th European Conference on Artificial Intelligence, pp. 366–370. IOS Press (2008)

  48. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Using complexity to protect elections. Commun. ACM 53(11), 74–82 (2010)

    Article  Google Scholar 

  49. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: The complexity of manipulative attacks in nearly single-peaked electorates. In: Proceedings of the 13th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 228–237. ACM Press (2011)

  50. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Multimode control attacks on elections. J. Artif. Intell. Res. 40, 305–351 (2011)

    MATH  MathSciNet  Google Scholar 

  51. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and Copeland voting computationally resist bribery and constructive control. J. Artif. Intell. Res. 35, 275–341 (2009)

    MATH  MathSciNet  Google Scholar 

  52. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: A richer understanding of the complexity of election systems. In: Ravi, S., Shukla, S. (eds.) Fundamental Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz, chap. 14, pp. 375–406. Springer (2009)

  53. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: The shield that never was: Societies with single-peaked preferences are more open to manipulation and control. Inf. Comput. 209(2), 89–107 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Faliszewski, P., Hemaspaandra, E., Schnoor, H.: Copeland voting: ties matter. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 983–990. IFAAMAS (2008)

  55. Faliszewski, P., Hemaspaandra, E., Schnoor, H.: Manipulation of Copeland elections. In: Proceedings of the 9th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 367–374. IFAAMAS (2010)

  56. Faliszewski, P., Procaccia, A.: AI’s war on manipulation: are we winning? AI Mag. 31(4), 53–64 (2010)

    Google Scholar 

  57. Flum, J., Grohe, M.: Parameterized Complexity Theory. EATCS Texts in Theoretical Computer Science. Springer-Verlag (2006)

  58. Friedgut, E., Kalai, G., Nisan, N.: Elections can be manipulated often. In: Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, pp. 243–249. IEEE Computer Society (2008)

  59. Friedgut, E., Keller, N., Kalai, G., Nisan, N.: A quantitative version of the Gibbard–Satterthwaite theorem for three alternatives. SIAM J. Comput. 40(3), 934–952 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  60. Gailmard, S., Patty, J., Penn, E.: Arrow’s theorem on single-peaked domains. In: Aragonés, E., Beviá, C., Llavador, H., Schofield, N. (eds.) The Political Economy of Democracy, pp. 335–342. Fundación BBVA (2009)

  61. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)

  62. Gasarch, W.: The \({\ensuremath{\mathrm{P}}} =\,? \,{\ensuremath{\mathrm{NP}}}\) poll. SIGACT News 33(2), 34–47 (2002)

    Article  Google Scholar 

  63. Gehrlein, W., Berg, S.: The effect of social homogeneity on coincidence probabilities for pairwise proportional lottery and simple majority rules. Soc. Choice Welf. 9(4), 361–372 (1992)

    MATH  MathSciNet  Google Scholar 

  64. Gibbard, A.: Manipulation of voting schemes. Econometrica 41(4), 587–601 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  65. Goldreich, O.: Notes on Levin’s theory of average-case complexity. Tech. Rep. TR97-058. Electronic Colloquium on Computational Complexity (1997)

  66. Hemaspaandra, E., Hemaspaandra, L.: Dichotomy for voting systems. J. Comput. Syst. Sci. 73(1), 73–83 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  67. Hemaspaandra, E., Hemaspaandra, L., Menton, C.: Search versus decision for election manipulation problems. In: Proceedings of the 30th Annual Symposium on Theoretical Aspects of Computer Science, pp. 377–388. Leibniz-Zentrum für Informatik (2013)

  68. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J. ACM 44(6), 806–825 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  69. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Raising NP lower bounds to parallel NP lower bounds. SIGACT News 28(2), 2–13 (1997)

    Article  Google Scholar 

  70. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: the complexity of precluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  71. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Hybrid elections broaden complexity-theoretic resistance to control. Math. Log. Q. 55(4), 397–424 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  72. Hemaspaandra, L., Williams, R.: An atypical survey of typical-case heuristic algorithms. SIGACT News 43(4), 71–89 (2012)

    Google Scholar 

  73. Homan, C., Hemaspaandra, L.: Guarantees for the success frequency of an algorithm for finding Dodgson-election winners. J. Heuristics 15(4), 403–423 (2009)

    Article  MATH  Google Scholar 

  74. Isaksson, M., Kindler, G., Mossel, E.: The geometry of manipulation: a quantitative proof of the Gibbard–Satterthwaite theorem. In: Proceedings of the 51st IEEE Symposium on Foundations of Computer Science, pp. 319–328. IEEE Computer Society (2010)

  75. Isaksson, M., Kindler, G., Mossel, E.: The geometry of manipulation—a quantitative proof of the Gibbard–Satterthwaite theorem. Combinatorica 32(2), 221–250 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  76. Konczak, K., Lang, J.: Voting procedures with incomplete preferences. In: Proceedings of the Multidisciplinary IJCAI-05 Workshop on Advances in Preference Handling, pp. 124–129 (2005)

  77. Korf, R.: From approximate to optimal solutions: a case study of number partitioning. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 266–272 (1995)

  78. Ladner, R., Lynch, N., Selman, A.: A comparison of polynomial time reducibilities. Theor. Comput. Sci. 1(2), 103–124 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  79. Lenstra Jr., H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  80. Lepelley, D.: Constant scoring rules, Condorcet criteria, and single-peaked preferences. Economic Theory 7(3), 491–500 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  81. Levin, L.: Average case complete problems. SIAM J. Comput. 15(1), 285–286 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  82. Lindner, C., Rothe, J.: Fixed-parameter tractability and parameterized complexity, applied to problems from computational social choice. In: Holder, A. (ed.) Mathematical Programming Glossary. INFORMS Computing Society (2008)

  83. Liu, H., Feng, H., Zhu, D., Luan, J.: Parameterized computational complexity of control problems in voting systems. Theor. Comput. Sci. 410(27–29), 2746–2753 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  84. Liu, H., Zhu, D.: Parameterized complexity of control problems in maximin election. Inf. Process. Lett. 110(10), 383–388 (2010)

    Article  MATH  Google Scholar 

  85. Mattei, N.: Empirical evaluation of voting rules with strictly ordered preference data. In: Proceedings of the 2nd International Conference on Algorithmic Decision Theory, pp. 165–177. Lecture Notes in Artificial Intelligence #6992. Springer-Verlag (2011)

  86. McCabe-Dansted, J., Pritchard, G., Slinko, A.: Approximability of Dodgson’s rule. Soc. Choice Welf. 31(2), 311–330 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  87. McCabe-Dansted, J., Slinko, A.: Exploratory analysis of similarities between common social choice rules. Group Decis. Negot. 15, 77–107 (2006)

    Article  Google Scholar 

  88. Meir, R., Procaccia, A., Rosenschein, J., Zohar, A.: Complexity of strategic behavior in multi-winner elections. J. Artif. Intell. Res. 33, 149–178 (2008)

    MATH  MathSciNet  Google Scholar 

  89. Menton, C.: Normalized range voting broadly resists control. Computing Research Repository (2012). Tech. Rep. arXiv:1005.5698 [cs.GT]. April 25, 2011. Revised June 26, 2012

  90. Mossel, E., Rácz, M.: Election manipulation: the average case. ACM SIGecom Exchanges 11(2), 22–24 (2012)

    Article  Google Scholar 

  91. Mossel, E., Rácz, M.: A quantitative Gibbard–Satterthwaite theorem without neutrality. In: Proceedings of the 44th Symposium on Theory of Computing, pp. 1041–1060. ACM (2012)

  92. Nanson, E.: Methods of election. Proc. R. Soc. Vic. 19, 197–240 (1882)

    Google Scholar 

  93. Narodytska, N., Walsh, T., Xia, L.: Manipulation of Nanson’s and Baldwin’s rules. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, pp. 713–718. AAAI Press (2011)

  94. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)

  95. Ogiwara, M., Watanabe, O.: On polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM J. Comput. 20(3), 471–483 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  96. Procaccia, A.: Can approximation circumvent Gibbard-Satterthwaite? In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 836–841 (2010)

  97. Procaccia, A., Rosenschein, J.: Average-case tractability of manipulation in voting via the fraction of manipulators. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 718–720 (2007). Short paper

  98. Procaccia, A., Rosenschein, J.: Junta distributions and the average-case complexity of manipulating elections. J. Artif. Intell. Res. 28, 157–181 (2007)

    MATH  MathSciNet  Google Scholar 

  99. Reisch, Y.: Das Manipulationsproblem für Bucklin–Wahlen. Bachelor thesis, Heinrich-Heine-Universität Düsseldorf, Institut für Informatik, Düsseldorf, Germany (2012)

  100. Rothe, J., Schend, L.: Control complexity in Bucklin, fallback, and plurality voting: an experimental approach. In: Proceedings of the 11th International Symposium on Experimental Algorithms, pp. 356–368. Lecture Notes in Computer Science #7276. Springer-Verlag (2012)

  101. Rothe, J., Schend, L.: Control complexity in Bucklin, fallback, and plurality voting: an experimental approach. Computing Research Repository (2012). Tech. Rep. arXiv:1203.3967v1 [cs.GT]. March 18, 2012. Revised August 20, 2012

  102. Satterthwaite, M.: Strategy-proofness and Arrow’s conditions: existence and correspondence theorems for voting procedures and social welfare functions. J. Econ. Theory 10(2), 187–217 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  103. Schöning, U.: Complete sets and closeness to complexity classes. Math. Syst. Theory 19(1), 29–42 (1986)

    Article  MATH  Google Scholar 

  104. Slinko, A.: On asymptotic strategy-proofness of classical social choice rules. Theory Decis. 52(4), 389–398 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  105. Slinko, A.: On asymptotic strategy-proofness of the plurality and the run-off rules. Soc. Choice Welf. 19(2), 313–324 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  106. Slinko, A.: How large should a coalition be to manipulate an election? Math. Soc. Sci. 47(3), 289–293 (2004)

    MATH  MathSciNet  Google Scholar 

  107. Tideman, N.: Independence of clones as a criterion for voting rules. Soc. Choice Welf. 4(3), 185–206 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  108. Walsh, T.: Uncertainty in preference elicitation and aggregation. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 3–8. AAAI Press (2007)

  109. Walsh, T.: Where are the really hard manipulation problems? The phase transition in manipulating the veto rule. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 324–329. IJCAI (2009)

  110. Walsh, T.: An empirical study of the manipulability of single transferable voting. In: Proceedings of the 19th European Conference on Artificial Intelligence, pp. 257–262. IOS Press (2010)

  111. Wang, J.: Average-case computational complexity theory. In: Hemaspaandra, L., Selman, A. (eds.) Complexity Theory Retrospective II, pp. 295–328. Springer-Verlag (1997)

  112. Wang, J.: Average-case intractable NP problems. In: Du, D., Ko, K. (eds.) Advances in Languages, Algorithms, and Complexity, pp. 313–378. Kluwer Academic Publishers (1997)

  113. Xia, L., Conitzer, V.: Generalized scoring rules and the frequency of coalitional manipulability. In: Proceedings of the 9th ACM Conference on Electronic Commerce, pp. 109–118. ACM Press (2008)

  114. Xia, L., Conitzer, V.: A sufficient condition for voting rules to be frequently manipulable. In: Proceedings of the 9th ACM Conference on Electronic Commerce, pp. 99–108. ACM Press (2008)

  115. Xia, L., Conitzer, V., Procaccia, A.: A scheduling approach to coalitional manipulation. In: Proceedings of the 11th ACM Conference on Electronic Commerce, pp. 275–284. ACM Press (2010)

  116. Xia, L., Zuckerman, M., Procaccia, A., Conitzer, V., Rosenschein, J.: Complexity of unweighted coalitional manipulation under some common voting rules. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 348–353. IJCAI (2009)

  117. Zuckerman, M., Lev, O., Rosenschein, J.: An algorithm for the coalitional manipulation problem under maximin. In: Proceedings of the 10th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 845–852. IFAAMAS (2011)

  118. Zuckerman, M., Procaccia, A., Rosenschein, J.: Algorithms for the coalitional manipulation problem. Artif. Intell. 173(2), 392–412 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Schend.

Additional information

This work was supported in part by DFG grant RO-1202/15-1, SFF grant “Cooperative Normsetting” of HHU Düsseldorf, and a DAAD grant for a PPP project in the PROCOPE programme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothe, J., Schend, L. Challenges to complexity shields that are supposed to protect elections against manipulation and control: a survey. Ann Math Artif Intell 68, 161–193 (2013). https://doi.org/10.1007/s10472-013-9359-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-013-9359-5

Keywords

Mathematics Subject Classifications (2010)

Navigation