Skip to main content

Advertisement

Log in

Design and analysis of energy recyclable bidirectional converter with digital controller for multichannel microstimulators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The power supply modulated microstimulator system can drive an expandable electrode array with reduced heat generation across the current drivers and high stimulation efficiency. Here, we present a comprehensive analytical modelling of the system to investigate internal and external energy flow during biphasic stimulation pulses spanning over varying loading configurations (e.g. number of electrodes, and stimulation current amplitude) that were not covered by existing works on the power supply modulated microstimulators. This paper fills the research gap by presenting the systematic tools for attaining insights of a stimulator system featuring a bidirectional DC–DC converter with an algorithmic digital controller. The models employed here are based on traditional analytical methods such as transfer functions and state-space dynamic models incorporating various circuit elements incurring power loss. With the models, the behaviour and power efficiency under a wide range of parameters associated with stimulator are attained. Numerical assessment reveals that the digital controller can track the output supply voltage at the phase transition boundaries just in tens of switching cycles. The system was also studied on a verification platform, where the internal signals of the digital controller were carefully examined. Measurement results show that the system behavior well matched to the simulation results, demonstrating the effectiveness of the analytical system model for obtaining key insights for generic large-scale micro-stimulator designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nag, S., Jia, X., Thakor, N., & Sharma, D. (2013). Flexible charge balanced stimulator with 5.6 fc accuracy for 140 nc injections. IEEE Transactions on Biomedical Circuits Systems, 7(3), 266–275. doi:10.1109/TBCAS.2012.2205574.

    Article  Google Scholar 

  2. Singh, V., Roy, A., Castro, R., McClure, K., Dai, R., Agrawal, R., et al. (2008). On the thermal elevation of a 60-electrode epiretinal prosthesis for the blind. IEEE Transactions on Biomedical Circuits Systems, 2(4), 289–300. doi:10.1109/TBCAS.2008.2003430.

    Article  Google Scholar 

  3. Opie, N. L., Burkitt, A. N., Meffin, H., & Grayden, D. B. (2012). Heating of the eye by a retinal prosthesis: Modeling, cadaver and in vivo study. IEEE Transactions on Biomedical Engineering, 59(2), 339–345. doi:10.1109/TBME.2011.2171961.

    Article  Google Scholar 

  4. Chen, K., Yang, Z., Hoang, L., Weiland, J., Humayun, M., & Liu, W. (2010). An integrated 256-channel epiretinal prosthesis. IEEE Journal Solid-State Circuits, 45(9), 1946–1956. doi:10.1109/JSSC.2010.2055371.

    Article  Google Scholar 

  5. Lee, K.F.E. (2010). A timing controlled ac-dc converter for biomedical implants. In ISSCC Dig. Tech. Papers, Feb. 2010, pp. 128–129. doi:10.1109/ISSCC.2010.5434021.

  6. Williams, I., & Constandinou, T. G. (2013). An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Transactions on Biomedical Circuits and Systems, 7(2), 129–139. doi:10.1109/TBCAS.2013.2256906.

    Article  Google Scholar 

  7. Arfin, S. K., & Sarpeshkar, R. (2012). An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. IEEE Transactions on Biomedical Circuits and Systems, 6(1), 1–14. doi:10.1109/TBCAS.2011.2166072.

    Article  Google Scholar 

  8. Lee, P. J. H., Bermak, A., Law, M. K., & Ohta, J. (2016). A multichannel power-supply-modulated microstimulator with energy recycling. IEEE Design and Test, 33(4), 61–73. doi:10.1109/MDAT.2016.2533359.

    Article  Google Scholar 

  9. Park, S. Y., Cho, J., Lee, K., & Yoon, E. (2015). A pwm buck converter with load-adaptive power transistor scaling scheme using analog-digital hybrid control for high energy efficiency in implantable biomedical systems. IEEE Transactions on Biomedical Circuits and Systems, 9(6), 885–895. doi:10.1109/TBCAS.2015.2501304.

    Google Scholar 

  10. Trescases, Olivier, Wei, Guowen, Prodic, Aleksandar, & Ng, Wai Tung. (2008). Predictive efficiency optimization for dc–dc converters with highly dynamic digital loads. IEEE Transactions on Power Electronics, 23(4), 1859–1869.

    Article  Google Scholar 

  11. Luo, P., Luo, L., Li, Z., Yang, J., & Chen, G. (2002). Skip cycle modulation in switching dc-dc converter. In IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002 (Vol. 2, pp. 1716–1719).

  12. Merrill, Daniel  R, Bikson, Marom, & Jefferys, John G. R. (2005). Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. Journal of Neuroscience Methods, 141(2), 171–198.

    Article  Google Scholar 

  13. Patrick, Y., Wu, Patrick  Y, Tsui, Sam Y. S., & Mok, Philip K. T. (2010). Area-and power-efficient monolithic buck converters with pseudo-type iii compensation. IEEE Journal of Solid-State Circuits, 45(8), 1446–1455.

    Article  Google Scholar 

  14. Redl, Richard, & Sun, Jian. (2009). Ripple-based control of switching regulatorsan overview. IEEE Transactions of Power Electronics, 24(12), 2669–2680.

    Article  Google Scholar 

  15. Tan, Siew-Chong, Lai, Yuk-Ming, Cheung, Martin  Kin-ho, & Tse, Chi  K. (2005). On the practical design of a sliding mode voltage controlled buck converter. IEEE Trans. Power Electron., 20(2), 425–437.

    Article  Google Scholar 

  16. Yu, X., Wang, B., & Li, X. (2012). Computer-controlled variable structure systems: The state-of-the-art. IEEE Transactions on Industrial Informatics, 8(2), 197–205. doi:10.1109/TII.2011.2178249.

    Article  Google Scholar 

  17. Jing, Xiaocheng, & Mok, Philip K. T. (2013). Power loss and switching noise reduction techniques for single-inductor multiple-output regulator. IEEE Transactions on Circuits Systems I: Regular Papers, 60(10), 2788–2798.

    Article  MathSciNet  Google Scholar 

  18. Streetman, B. G., & Banerjee, S. (1995). Solid state electronic devices (Vol. 2). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  19. Eichhorn, T. (2005). Estimate inductor losses easily in power supply designs. Power Electronics Technology, 31, 14–24.

    Google Scholar 

  20. Venkatachalam, K., Sullivan, C. R., Abdallah, T., & Tacca, H. (2002). Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only steinmetz parameters. In IEEE Workshop on Computers in Power Electronics (pp. 36–41).

  21. Peterchev, A. V., & Sanders, S. R. (2003). Quantization resolution and limit cycling in digitally controlled pwm converters. IEEE Transactions on Power Electronics, 18(1), 301–308. doi:10.1109/TPEL.2002.807092.

    Article  Google Scholar 

  22. Zheng, C., & Ma, D. (2011). A 10-mhz green-mode automatic reconfigurable switching converter for dvs-enabled vlsi systems. IEEE Journal of Solid-State Circuits, 46(6), 1464–1477. doi:10.1109/JSSC.2011.2131770.

    Article  Google Scholar 

  23. Lee, Y. H., Huang, S. C., Wang, S. W., Wu, W. C., Huang, P. C., Ho, H. H., et al. (2012). Power-tracking embedded buck-boost converter with fast dynamic voltage scaling for the soc system. IEEE Transactions on Power Electronics, 27(3), 1271–1282. doi:10.1109/TPEL.2010.2101085.

    Article  Google Scholar 

  24. Cheng, L., Liu, Y., & Ki, W. H. (2014). A 10/30 mhz fast reference-tracking buck converter with dda-based type-iii compensator. IEEE Journal of Solid-State Circuits, 49(12), 2788–2799. doi:10.1109/JSSC.2014.2346770.

    Article  Google Scholar 

  25. Kudva, Sudhir  S, & Harjani, Ramesh. (2011). Fully-integrated on-chip dc-dc converter with a 450x output range. IEEE Journal of Solid-State Circuits, 46(8), 1940–1951.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the RGC research Grant Reference: 610412, the NRPP grant from Qatar National Research Fund Reference: NPRP9-421-2-170 and the Research Committee of the University of Macau (MYRG2015-AMSV-00140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Jung-Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, P.JH., Law, MK. & Bermak, A. Design and analysis of energy recyclable bidirectional converter with digital controller for multichannel microstimulators. Analog Integr Circ Sig Process 91, 417–431 (2017). https://doi.org/10.1007/s10470-017-0960-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0960-0

Keywords

Navigation