Skip to main content
Log in

A high performance CNFET-based operational transconductance amplifier and its applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

High performance electronic systems face several challenges in driving innovative integrated circuits when the internal transistors are scaled down below 45 nm. Carbon nanotube field effect transistors (CNFETs) are considered as excellent candidates for building energy-efficient electronic systems in the near future, due to their unique characteristics such as ballistic transport, scalability, and better channel electrostatics. In this paper, a new high performance operational transconductance amplifier (OTA) based on 32 nm CNFET devices is presented. The proposed OTA maintains a highly linear wide continuous tuning range and a wide frequency response range, enabled by splitting the linear voltage-to-current conversion and tuning two different blocks. As an application, a universal second-order transconductance-capacitor (G m  − C) filter realized using the OTA is introduced. Simulation results show that the CNFET-based OTA offers very a low current consumption of 2.35 μA from a ± 0.9 V power supply, achieves a bandwidth of 9.5 MHz, and has an input dynamic range of ± 0.2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mobarak, M., Onabajo, M., Silva-Martinez, J., & Sanchez-Sinencio, E. (2010). Attenuation–predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications. IEEE Journal of Solid-State Circuits, 45(2), 351–367.

    Article  Google Scholar 

  2. Loan, S. A., Nizamuddin, M., Shabir, H., et al. (2014). Carbon nanotube based operational transconductance amplifier: A simulation study. In International multi conference of engineers and computer scientists 2014 (pp. 231–242).

  3. Pankiewicz, B., Wojcikowski, M., Szczepanski, S., & Sun, Y. (2002). A field programmable analog array for CMOS continuous-time OTA-C filter applications. IEEE Journal of Solid-State Circuits, 37(2), 125–136.

    Article  Google Scholar 

  4. Luo, J., Wei, L., Lee, C., Franklin, A. D., et al. (2013). Compact model for carbon nanotube field-effect transistors including nonidealities and calibrated with experimental data down to 9-nm gate length. IEEE Transactions on Electron Devices, 60(6), 1834–1843.

    Article  Google Scholar 

  5. Sinha, S. K., & Chaudhury, S. (2013). Impact of oxide thickness on gate capacitance—a comprehensive analysis on MOSFET, nanowire FET, and CNTFET devices. IEEE Transactions on Nanotechnology, 12(6), 958–964.

    Article  Google Scholar 

  6. Imran, A., Hasan, M., Islam, A., & Abbasi, S. A. (2012). Optimized design of a 32-nm CNFET-based low-power ultrawideband CCII. IEEE Transactions on Nanotechnology, 11(6), 1100–1109.

    Article  Google Scholar 

  7. Abu El-Seoud, A. K., El-Banna, M., & Hakim, M. A. (2007). On modelling and characterization of single electron transistor. International Journal of Electronics, 94(6), 573–585.

    Article  Google Scholar 

  8. Zhang, J., Lin, A., Patil, N., Wei, H., Wei, L., Philip Wong, H.-S., et al. (2012). Robust digital VLSI using carbon nanotubes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(4), 144–148.

    Article  Google Scholar 

  9. Appenzeller, J. (2008). Carbon nanotubes for high-performance electronics—Progress and prospect. Proceedings of IEEE, 96(2), 201–211.

    Article  Google Scholar 

  10. Lin, S., Kim, Y., Lombardi, F. (2009). A novel CNFET based ternary logic gate design. In Proceedings of IEEE International Midwest Symposium on Circuits and Systems (pp. 435–438).

  11. Iijima, S. (1991). Hellicalmicrotubes of graphite. Nature, 354, 56–58.

    Article  Google Scholar 

  12. Patil, N., Deng, J., Mitra, S., & Philip Wong, H.-S. (2009). Circuit-level performance benchmarking and scalability analysis of carbon nanotube transistor circuits. IEEE Transactions on Nanotechnology, 8(1), 37–45.

    Article  Google Scholar 

  13. Deng, J., & Philip Wong, H.-S. (2007). A Compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: Model of the intrinsic channel region. IEEE Transactions on Electron Devices, 54(12), 3186–3194.

    Article  Google Scholar 

  14. Saari, V., Kaltiokallio, M., Lindfors, S., Ryynänen, J., & Halonen, K. A. I. (2009). A 240-MHz low-pass filter with variable gain in 65-nm CMOS for a UWB radio receiver. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(7), 1488–1499.

    Article  MathSciNet  Google Scholar 

  15. Li, Y., Kim, W., Zhang, Y., Rolandi, M., & Wang, D. (2001). Growth of singlewalled carbon nanotubes from discrete catalytic nanoparticles of various sizes. Journal of Physical Chemistry, 105, 11424–11431.

    Article  Google Scholar 

  16. Ohno, Y., Kishimoto, S., Mizutani, T., Okazaki, T., & Shinohara, H. (2004). Chirality assignment of individual single-walled carbon nanotubes in carbon nanotube field-effect transistors by micro-photocurrent spectroscopy. Applied Physics Letters, 84(8), 1368–1370.

    Article  Google Scholar 

  17. Wang, B., Poa, P., Wei, L., Li, L., Yang, Y., & Chen, Y. (2007). (n, m) Selectivity of single-walled carbon nanotubes by different carbon precursors on Co–Mocatalysts. Journal of the American Chemical Society, 129(9), 9014–9019.

    Article  Google Scholar 

  18. Deng, J., & Wong, H.-S. P. (2007). A compact SPICE model for carbon-nanotube field effect transistors including nonidealities and application—Part II: Full device model and circuit benchmarking. IEEE Transactions on Electron Devices, 54(12), 3195–3205.

    Article  Google Scholar 

  19. Stanford University. (2008). CNFET Model Website [Online]. http://nano.stanford.edu/model.php?Id=23.

  20. Song, S., Yan, G.-P., & Cao, H. (2007). A highly linear wide range continuous tuning CMOS OTA. In 7th international conference on ASIC (pp. 588–591).

  21. Carvajal, R. G., Ramirez-Angulo, J., Lopez-Martin, A. J., Torralba, A., Galan, J. A. G., Carlosena, A., et al. (2005). The flipped voltage follower: A useful cell for low-voltage low-power circuit design. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(7), 1276–1291.

    Article  Google Scholar 

  22. Surakampontorn, W., & Kumwachara, K. (1992). CMOS-based electronically tunable current conveyor. Electronics Letters, 28(14), 1316–1317.

    Article  Google Scholar 

  23. Minaei, S., Sayin, O. K., & Kuntman, H. (2006). A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(7), 1448–1557.

    Article  Google Scholar 

  24. Zeki, A., & Kuntman, H. (1997). Accurate and high output impedance current mirror suitable for CMOS current output stages. Electronics Letters, 33(12), 1042–1043.

    Article  Google Scholar 

  25. Loan, S. A., Nizamuddin, M., Alamoud, A. R., & Abbasi, S. A. (2015). Design and comparative analysis of high performance carbon nanotube-based operational transconductance amplifiers. World Scientific Journal Nano, 10(3), 1550039-1–1550039-11.

    Google Scholar 

  26. Sánchez-Sinencio, E., & Silva-Martinez, J. (2000). CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEEE Proceedings—Circuits, Devices and Systems, 147(1), 3–12.

    Article  Google Scholar 

  27. Gambhir, M., Dhanasekaran, V., Silva-Martinez, J., & SánchezSinencio, E. (2008). A low power 1.3 GHz dual-path current mode Gm-C filter. In Proceedings of IEEE custom integrated circuits conference (pp. 703–706).

  28. Gowri Sankar, P.A., Udhaya Kumar, K. (2013). Design and analysis of two stage operational amplifier based on emerging sub-32 nm technology. In International conference on advanced nanomaterials and emerging engineering technologies (ICANMEET-2013) (pp. 587–591).

  29. Abdulaziz, M. (2006). Design of a linear CMOS OTA with wide input voltage range. In International symposium on communications and information technologies, ISCIT ‘06, 2006 (pp. 360–363).

  30. Abdelfattah, O., Roberts, G., Shih, I., Shih, Y.-C. (2015). A 0.35-V bulk-driven self-biased OTA with rail-to-rail input range in 65 nm CMOS. In 2015 IEEE international symposium on circuits and systems (ISCAS) (pp. 257–260).

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 61361011), the Natural Science Foundation of Guangxi (No. 2014jjAA70058), and the Project of Outstanding Young Teachers’ Training in Higher Education Institutions of Guangxi (No. GXQG022014002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxiang Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, M., Song, S. & Cai, C. A high performance CNFET-based operational transconductance amplifier and its applications. Analog Integr Circ Sig Process 91, 463–472 (2017). https://doi.org/10.1007/s10470-017-0951-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0951-1

Keywords

Navigation