Skip to main content
Log in

A linearized common-gate low-noise amplifier using active cross-coupled feedback technique

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A wideband linearized common-gate low-noise amplifier (LNA) is proposed. The linearity is improved by active cross-coupled feedback technique. The active cross-coupled feedback circuit, consisting of a complementary source follower and a feedback capacitor, is employed to enhance loop gain, and acquire linearity improvement. A passive cross-coupled feedback removes the second-order harmonic feedback effect to the input-referred third-order intercept point (IIP3). An enhanced LC-match input network and forward isolation of the active cross-coupled feedback enable the proposed LNA with wideband input matching and flat gain performance, respectively. Fabricated in a 0.13 μm RF CMOS process, the LNA achieves a flat voltage gain of 14.5 dB, an NF of 2.5–3.4 dB, and an IIP3 of 3.1–4.3 dBm over a 3 dB bandwidth of 0.1–1.2 GHz. It consumes only 3.5 mA from a 1.2 V supply and occupies an area of 0.2 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Svensson, Christer. (2010). The blocker challenge when implementing software defined radio receiver RF frontends. Analog Integrated Circuits and Signal Processing, 64, 81–89.

    Article  Google Scholar 

  2. ud Din, I., Wernehag, J., Wernehag, J., Andersson, S., Sjöland, H., & Mattisson, S. (2013). Tunable wideband SAW-less receiver front-end in 65 nm CMOS. Analog Integrated Circuits and Signal Processing, 77, 3–16.

    Article  Google Scholar 

  3. Guo, B. & Li, X. (2013). A 1.6–9.7 GHz CMOS LNA Linearized by Post Distortion Technique. IEEE Microwave and Wireless Components Letters, 23, 11

  4. Kim, T. W., Kim, B., & Lee, K. (2004). Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors. IEEE Journal of Solid-State Circuits, 39(1), 223–229.

    Article  Google Scholar 

  5. Kim, T. W. (2009). A common-gate amplifier with transconductance nonlinearity cancellation and its high-frequency analysis using the Volterra series. IEEE Transactions on Microwave Theory and Techniques, 57(6), 1461–1469.

    Article  Google Scholar 

  6. Aparin, V., & Larson, L. E. (2005). Modified derivative superposition method for linearizing FET low-noise amplifiers. IEEE Transactions on Microwave Theory and Techniques, 53(2), 571–581.

    Article  Google Scholar 

  7. Ganesan, S., Sánchez-Sinencio, E., & Silva-Martinez, J. (2006). A highly linear low noise amplifier. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4079–4085.

    Article  Google Scholar 

  8. Han, H. G., Jung, D. H., & Kim, T. W. (2015). A 2.88 mW + 9.06 dBm IIP3 Common-Gate LNA With Dual Cross-Coupled Capacitive Feedback. IEEE Transactions on Microwave Theory and Techniques, 63(3), 1019–1025.

    Article  Google Scholar 

  9. Borremans, J., Wambacq, P., Soens, C., Rolain, Y., & Kuijk, M. (2008). Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS. IEEE Journal of Solid-State Circuits, 43(11), 2422–2433.

    Article  Google Scholar 

  10. Zhuo, W., Li, X., Shekhar, S., & Embabi, S. H. K. (2005). A capacitor cross-coupled common-gate low-noise amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(12), 875–879.

    Article  Google Scholar 

  11. Im, D., Nam, I., & Lee, K. (2010). A CMOS active feedback balun-LNA with high IIP2 for wideband digital TV receivers. IEEE Transactions on Microwave Theory and Techniques, 58(12), 3566–3579.

    Google Scholar 

  12. Guo, B., Wang, H., & Yang, G. (2014). A wideband merged CMOS active mixer exploiting noise cancellation and linearity enhancement. IEEE Transactions on Microwave Theory and Techniques, 62(9), 2084–2091.

    Article  Google Scholar 

  13. Moezzi, M., & Sharif Bakhtiar, M. (2012). Wideband LNA using active inductor with multiple feed-forward noise reduction paths. IEEE Transactions on Microwave Theory and Techniques, 60(4), 1069–1078.

    Article  Google Scholar 

  14. Liu, J. Y.-C., Chen, J.-S., Hsia, C., Yin, P.-Y., & Lu, C.-W. (2014). A wideband inductorless single-to-differential LNA in 0.18 μm CMOS technology for digital TV receivers. IEEE Microwave and Wireless Components Letters, 24(7), 472–474.

    Article  Google Scholar 

  15. Lee, H., Chung, T., Seo, H., Choi, I., & Kim, B. (2015). A wideband differential low-noise-amplifier With IM3 harmonics and noise canceling. IEEE Microwave and Wireless Components Letters, 25(1), 46–48.

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the Fundamental Research Fund for the Central Universities (No. 10120151101) and the Research Fund in Science & Technology on Information Transformation in Communication Networks Laboratory (ITU-U14009/KX142600016), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benqing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Chen, J. & Jin, H. A linearized common-gate low-noise amplifier using active cross-coupled feedback technique. Analog Integr Circ Sig Process 89, 239–248 (2016). https://doi.org/10.1007/s10470-016-0817-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0817-y

Keywords

Navigation