Skip to main content
Log in

0.75 V supply nanowatt resistorless sub-bandgap curvature-compensated CMOS voltage reference

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This work presents a resistorless self-biased and small area sub-bandgap voltage reference that works in the nano-ampere consumption range with 0.75 V of power supply. The circuit applies a curvature compensation technique that allows an extended temperature range without compromising the temperature stability. The behavior of the circuit is analytically described, and a design methodology is proposed which allows the separate adjustment of the bipolar junction transistor bias current and its curvature compensation. Simulation results are presented for a 180 nm CMOS process, where a reference voltage of 469 mV is designed, with a temperature coefficient of 5 ppm/°C for the −40 to 125 °C extended temperature range. The power consumption of the whole circuit is 16.3 nW under a 0.75 V power supply at 27 °C. The estimated silicon area is 0.0053 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Duan, Q., & Roh, J. (2015). A 1.2-V 4.2 ppm/°C high-order curvature-compensated CMOS bandgap reference. Circuits and Systems I: Regular Papers, IEEE Transactions on, 62(3), 662–670. doi:10.1109/TCSI.2014.2374832.

    Article  MathSciNet  Google Scholar 

  2. Galup-Montoro, C., & Schneider, M. R. C. (2007). MOSFET modeling for circuit analysis and design. Hackensack: World Scientific.

    Google Scholar 

  3. Magnelli, L., Crupi, F., Corsonello, P., Pace, C., & Iannaccone, G. (2011). A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE Journal of Solid-State Circuits, 46(2), 465–474. doi:10.1109/JSSC.2010.2092997.

    Article  Google Scholar 

  4. Mattia, O.E., Klimach, H., Bampi, S. (2014). 0.7 V supply, 8 nW, 8 ppm/°C resistorless sub-bandgap voltage reference. In: 2014 IEEE 57th international midwest symposium on circuits and systems (MWSCAS), pp. 479–482. IEEE, doi: 10.1109/MWSCAS.2014.6908456.

  5. Mattia, O. E., Klimach, H., & Bampi, S. (2014). Resistorless BJT bias and curvature compensation circuit at 3.4 nW for CMOS bandgap voltage references. Electronics Letters, 50(12), 863–864. doi:10.1049/el.2013.3417.

    Article  Google Scholar 

  6. Mattia, O. E., Klimach, H., & Bampi, S. (2015). Sub-1 V supply 5 nW 11 ppm/°C resistorless sub-bandgap voltage reference. Analog Integrated Circuits and Signal Processing, 85(1), 17–25. doi:10.1007/s10470-015-0582-3. http://link.springer.com/10.1007/s10470-015-0582-3.

  7. Meijer, G.C., Schmale, P.C., Zalinge, K.V. (1981). A new curvature-corrected bandgap reference. Solid State Circuits Conference, 1981. ESSCIRC ’81. 7th European (6), doi:10.1109/JSSC.1982.1051872.

  8. Ming, X., Ma, Y. Q., Zhou, Z. K., & Zhang, B. (2010). A high-precision compensated CMOS bandgap voltage reference without resistors. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(10), 767–771. doi:10.1109/TCSII.2010.2067770.

    Article  Google Scholar 

  9. Osaki, Y., Hirose, T., Kuroki, N., & Numa, M. (2013). 1.2-V supply, 100-nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V subbandgap reference circuits for nanowatt CMOS LSIs. IEEE Journal of Solid-State Circuits, 48(6), 1530–1538. doi:10.1109/JSSC.2013.2252523.

    Article  Google Scholar 

  10. Seok, M., Kim, G., Blaauw, D., & Sylvester, D. (2012). A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE Journal of Solid-State Circuits, 47(10), 2534–2545. doi:10.1109/JSSC.2012.2206683.

    Article  Google Scholar 

  11. Song, B.S.S.B.S., Gray, P. A (1983). precision curvature-compensated CMOS bandgap reference. 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers XXVI (6). doi:10.1109/ISSCC.1983.1156435.

  12. Tsividis, Y. P. (1980). Accurate analysis of temperature effects in IC-VBE characteristics with application to bandgap reference sources. IEEE Journal of Solid-State Circuits, 15(6), 1076–1084.

    Article  Google Scholar 

  13. Vittoz, E., & Neyroud, O. (1979). A low-voltage CMOS bandgap reference. IEEE Journal of Solid-State Circuit, 14(3), 573–579. doi:10.1109/JSSC.1979.1051218.

    Article  Google Scholar 

  14. Wang, Y., Zhu, Z., Yao, J., & Yang, Y. (2015). A 0.45-V, 14.6-nW CMOS subthreshold voltage reference with no resistors and no BJTs. Circuits Systtems II Express Briefs, IEEE Transaction, 62(7), 621–625.

    Article  Google Scholar 

  15. Widlar, R. (1971). New developments in IC voltage regulators. IEEE Journal of Solid-State Circuits, 6(1), 2–7. doi:10.1109/JSSC.1971.1050151.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to MOSIS Education Program, CNPq and CAPES brazilian agencies, CI-BRASIL Program and NSCAD Microelectronics for support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhon Alexander Gomez Caicedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez Caicedo, J.A., Mattia, O.E., Klimach, H. et al. 0.75 V supply nanowatt resistorless sub-bandgap curvature-compensated CMOS voltage reference. Analog Integr Circ Sig Process 88, 333–345 (2016). https://doi.org/10.1007/s10470-016-0722-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0722-4

Keywords

Navigation