Skip to main content

Advertisement

Log in

A microwatt switched-capacitor voltage doubler-based voltage regulator for ultra-low power energy harvesting systems

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents an SC voltage doubler-based voltage regulator for ultra-low power energy harvesting applications. It produces a stable 1.2-V power supply, using inputs from 0.63 to 1.8 V. External compensation and an on-chip output capacitor ensure good performance even with zero load current and any load capacitance. The regulator tolerates arbitrary input ramp-ups, and is immune to blackout and brownout. A stability analysis for the regulator control loop is presented. The regulator ASIC is implemented in a 180 nm CMOS process. The measured regulator peak power and current efficiency are 63 and 49 %, respectively. The performance has been characterized with load currents from zero to \(100\,\upmu\)A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kadirvel, K., Ramadass, Y., Lyles, U., Carpenter, J., Ivanov, V., McNeil, V., et al. (2012). A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting. In Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (pp. 106–108). San Francisco, CA.

  2. Jung, W., Oh, S., Bang, S., Lee, Y., Foo, Z., Kim, G., et al. (2014). An ultra-low power fully integrated energy harvester based on self-oscillating switched-capacitor voltage doubler. IEEE Journal of Solid-State Circuits, 49(12), 2800–2811.

    Article  Google Scholar 

  3. Kalanti, A., Aaltonen, L., Yücetas, M., Pulkkinen, M., Paavola, M., Kämäräinen, M., et al. (2011). Inductorless voltage regulator system with voltage increasing capability for low-power sensors. In Proceedings of the IEEE Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (pp. 101–104). Trento.

  4. Shih, Y. C., & Otis, B. P. (2011). An inductorless DC–DC converter for energy harvesting with a 1.2-bandgap-referenced output controller. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(12), 832–836.

    Article  Google Scholar 

  5. Seeman, M. D., Sanders, S. R., & Rabaey, J. M. (2008). An ultra-low-power power management IC for energy-scavenged Wireless Sensor Nodes. In Proceedings of the IEEE Annual Power Electronics Specialists Conference (pp. 925–931). Rhodes.

  6. Huang, Ming-Hsin, Hsieh, Chun-Yu., Fan, Po-Chin, & Chen, Ke-Horng. (2010). A dual-phase charge pump circuit with compact size. Analog Integrated Circuits and Signal Processing, 64(1), 55–67.

    Article  Google Scholar 

  7. Aaltonen, L., & Halonen, K. (2009). On-chip charge-pump with continuous frequency regulation for precision high-voltage generation. In Proceedings of the IEEE Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (pp. 68–71). Cork.

  8. Favrat, P., Deval, P., & Declercq, M. J. (1997). An improved voltage doubler in a standard CMOS technology. In Proceedings of the IEEE International Symposium on Circuits and Systems (pp. 249–252). Hong Kong.

  9. Bol, D., De Vos, J., Hocquet, C., Durvaux, F., Boyd, S., et al. (2013). Sleepwalker: A 25-MHz 0.4-V Sub-mm 7-μW/MHz microcontroller in 65-nm LP/GP CMOS for low-carbon wireless sensor nodes. IEEE Journal of Solid-State Circuits, 48(1), 20–32.

    Article  Google Scholar 

  10. Lee, H., & Mok, P. K. T. (2007). An SC voltage doubler with pseudo-continuous output regulation using a three-stage switchable opamp. IEEE Journal of Solid-State Circuits, 42(6), 1216–1229.

    Article  Google Scholar 

  11. Wei, C-L, & Yang, H-H. (2010). Analysis and design of a step-down switched-capacitor-based converter for low-power application. In Proceedings of the IEEE international symposium on circuits and systems (pp. 3184–3187). Paris.

  12. Ramadass, Y. K., Fayed, A. A., & Chandrakasan, A. P. (2010). A fully-integrated switched-capacitor step-down DC–DC converter with digital capacitance modulation in 45 nm CMOS. IEEE Journal of Solid-State Circuits, 45(12), 2557–2565.

    Article  Google Scholar 

  13. Zhang, X., & Lee, H. (2010). An efficiency-enhanced auto-reconfigurable 2/3 SC charge pump for transcutaneous power transmission. IEEE Journal of Solid-State Circuits, 45(9), 1906–1922.

    Article  Google Scholar 

  14. Wei, C.-L., & Shih, M.-H. (2013). Design of a switched-capacitor DC–DC converter with a wide input voltage range. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(6), 1648–1656.

    Article  Google Scholar 

  15. Lee, H., Hua, Z., & Zhang, X. (2015). A reconfigurable 2×/2.5×/3×/4× SC DC-DC regulator with fixed on-time control for transcutaneous power transmission. IEEE Transactions on VLSI Systems, 23(4), 712–722.

    Article  Google Scholar 

  16. Hua, Z., & Lee, H. (2015). A reconfigurable dual-output switched-capacitor DC–DC regulator with sub-harmonic adaptive-on-time control for low-power applications. IEEE Journal of Solid-State Circuits, 50(3), 724–736.

    Article  Google Scholar 

  17. Kudva, S. S., & Harjani, R. (2013). Fully integrated capacitive DC–DC converter with all-digital ripple mitigation technique. IEEE Journal of Solid-State Circuits, 48(8), 1910–1920.

    Article  Google Scholar 

  18. Le, H.-B., Do, X.-D., Lee, S.-G., & Ryu, S.-T. (2011). A long reset-time power-on reset circuit with brown-out detection capability. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(11), 778–782.

    Article  Google Scholar 

  19. Seeman, M. D., & Sanders, S. R. (2008). Analysis and optimization of switched-capacitor DC–DC converters. IEEE Transactions on Power Electronics, 23(2), 841–851.

    Article  Google Scholar 

Download references

Acknowledgments

This work received funding from the AUTOVOLT project granted by the Academy of Finland (Grant Number 140267) and the EffiNano project granted by Aalto University School of Electrical Engineering (Grant Number 10/2012), and Aalto ELEC Doctoral School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarno Salomaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salomaa, J., Pulkkinen, M. & Halonen, K. A microwatt switched-capacitor voltage doubler-based voltage regulator for ultra-low power energy harvesting systems. Analog Integr Circ Sig Process 88, 347–358 (2016). https://doi.org/10.1007/s10470-016-0708-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0708-2

Keywords

Navigation