Skip to main content

Advertisement

Log in

A complete analysis and measurement results of the threshold voltage cancellation scheme for RF to DC converter

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, the threshold voltage cancellation scheme for the RF-to-DC converter used in RF energy harvesting is presented. The proposed scheme reduces the threshold voltage of PMOS transistor used in CMOS rectifier with the use of additional CMOS components. The performance of the proposed scheme is evaluated against the conventional CMOS rectifier in terms of the power conversion efficiency (PCE). Measurements were done at 433 MHz RF frequency for resistive load values ranging from 1 to 120 K\(\Omega\). The measured peak PCE of the conventional CMOS and proposed rectifiers are 16 and 35 %, respectively, for the input RF power level of \(-8\) dBm and resistive load of value 10 K\(\Omega\). The implementation of the proposed scheme is also tested in the multi-stage rectifier circuit (MSC) topology. All PMOS-based DTMOS-biased MSC circuit was selected to implement the proposed scheme and for performance comparison. The measured results show the PCE of a five stage DTMOS-biased MSC circuit is 15 % @ \(-6\) dBm with 66 K\(\Omega\) resistive load whereas after implementing proposed scheme on the alternate PMOS transistors of DTMOS-biased MSC circuit resulted into 19 % PCE for the same input and output conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Tesla, N. (1901). Apparatus for the utilization of radiant energy. Google Patents.

  2. Parks, A. N., Sample, A. P., Zhao, Y., & Smith J. R. (2013). A wireless sensing platform utilizing ambient RF energy. In Proceedings of IEEE Radio and Wireless Symposium (pp. 331–333).

  3. Nishimoto, H., Kawahara, Y., & Asami, T. (2010). Prototype implementation of ambient RF energy harvesting wireless sensor networks. In Proceedings of IEEE Sensors (pp. 1282–1287).

  4. Chen, L.-Y., Mao, L.-H., & Huang, X.-Z. (2010). Design and analysis of a low power passive UHF RFID transponder IC. Analog Integrated Circuits and Signal Processing, 66(1), 61–66.

    Article  Google Scholar 

  5. Meillere, S., Herve Barthelemy, H., & Martin, M. (2006). 13.56 MHz CMOS transceiver for RFID applications. Analog Integrated Circuits and Signal Processing, 49(3), 249–256.

    Article  Google Scholar 

  6. Yakovlev, A., Pivonka, D., Meng, T., & Poon, A. (2012). A mm-sized wirelessly powered and remotely controlled locomotive implantable device. In IEEE International Solid-State Circuits Conference Digest of Technical Papers (pp. 302–304).

  7. Chaimanonart, N., Olszens, K. R., Zimmerman, M. D., Ko, W. H., & Young, D. J. (2006). Implantable RF power converter for small animal in vivo biological monitoring. In Proceedings of IEEE International Conference of the Engineering in Medicine and Biology Society (pp. 5194–5197).

  8. Mikeka, C. & Arai, H. (2011). Design issues in radio frequency energy harvesting system, sustainable energy harvesting technologies—Past, present and future. In Dr. Y. K. Tan (Ed.), Intech Open. Available from: http://www.intechopen.com/books/sustainable-energy-harvesting-technologies-past-present-and-future/design-issues-in-radio-frequency-energy-harvesting-system.

  9. Oh, S. & Wentzloff D. D. (2012). A G32dBm sensitivity RF power harvester in 130nm CMOS. In Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (pp. 483–486).

  10. Filanovsky, I. M., & Allam, A. (2001). Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(7), 876–884.

    Article  Google Scholar 

  11. Mustafa, F., Parimon, N., Hashim, A. M., Abd Rahman, S. F., Abdul Rahman, A. R., & Osman, M. N. (2010). RFGDC power conversion of Schottky diode fabricated on AlGaAs/GaAs heterostructure for on-chip rectenna device application in nanosystems. Microsystem Technologies, 16(10), 1713–1717.

    Article  Google Scholar 

  12. Matias, M. L., Cunha, J. P. C., Dal Fabbro, P. A., Mioni, D., Prodanov, W., Pessatti, M., Leite, B., & Mariano, A. (2014). A comparison of high-efficiency UHF RFID rectifiers using internal voltage compensation and zero-threshold-voltage MOSFETs. In Proceedings of IEEE Latin American Symposium on Circuits and Systems (pp. 1–4).

  13. Wu, S.-M., Lin, C.-Y., & Pai, L.-C. (2010). Analysis and design of an efficient RF/DC rectifier for UHF power harvester. In Proceedings of IEEE International Conference on Wireless Information Technology and Systems (pp. 1–4).

  14. Kocer, F., & Flynn, M. P. (2006). A new transponder architecture with on-chip ADC for long-range telemetry applications. IEEE Journal of Solid-State Circuits, 41(5), 1142–1148.

    Article  Google Scholar 

  15. Le, T., Mayaram, K., & Fiez, T. (2008). Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE Journal of Solid-State Circuits, 43(5), 1287–1302.

    Article  Google Scholar 

  16. Giannakas, G., Plessas, F., & Stamoulis, G. (2012). Pseudo-FG technique for efficient energy harvesting. Electronics Letters, 48(9), 522–523.

    Article  Google Scholar 

  17. Assaderaghi, F., Sinitsky, D., Parke, S., Bokor, J., Ko, P. K. & Hu, C. (1994). A dynamic threshold voltage MOSFET (DTMOS) for ultra-low voltage operation. In International Electron Devices Meeting Technical Digest (pp. 809–812).

  18. Chouhan, S. S. & Halonen K. (2014). The design and implementation of DTMOS biased all PMOS rectifier for RF energy harvesting. In Proceedings of IEEE International New Circuits and Systems Conference (NEWCAS) (pp. 444–447).

  19. Umeda, T., Yoshida, H., Sekine, S., Fujita, Y., Suzuki, T., & Otaka, S. (2006). A 950-MHz rectifier circuit for sensor network tags with 10-m distance. IEEE Journal of Solid-State Circuits, 41(1), 35–41.

    Article  Google Scholar 

  20. Feldengut, T., Kokozinski, R. & Kolnsberg, S. (2009). A UHF voltage multiplier circuit using a threshold-voltage cancellation technique. In Proceeding of IEEE Ph.D Research in Microelectronics and Electronics (pp. 288–291).

  21. Nakamoto, H., Yamazaki, D., Yamamoto, T., Kurata, H., Yamada, S., Mukaida, K., Ninomiya, T., Ohkawa, T., Masui, S. & Gotoh, K. (2006). A passive UHF RFID tag LSI with 36.6% efficiency CMOS-only rectifier and current-mode demodulator in 0.35/spl mu/m FeRAM technology. In IEEE International Solid-State Circuits Conference Digest of Technical Papers (pp. 1201–1210).

  22. Yuxiang, Y., Yoshida, Y. & Kuroda, T. (2007). Non-contact 10% efficient 36mW power delivery using on-chip inductor in 0.18-\(\mu\)m CMOS. In Proceeding of IEEE Asian Solid-State Circuits Conference (pp. 115–118).

  23. Kotani, K. & Ito, T. (2007) High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs. In Proceeding of IEEE Asian Solid-State Circuits Conference (pp. 119–122).

  24. Technical report (2002) Fairchild semiconductor effect of ON resistance (R\(_{ON}\)) to an analog switch.

  25. Yi, J., Ki, W.-H., & Tsui, C.-Y. (2007). Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(1), 153–166.

    Article  Google Scholar 

  26. Barnett, R. E., Liu, J., & Lazar, S. (2009). A RF to DC voltage conversion model for multi-stage rectifiers in UHF RFID transponders. IEEE Journal of Solid-State Circuits, 44(2), 354–370.

    Article  Google Scholar 

  27. Kotani, K., Sasaki, A., & Ito, T. (2009). High-efficiency differential-drive CMOSrectifier for UHF RFIDs. IEEE Journal of Solid-State Circuits, 44(11), 3011–3018.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the projects, AUTOVOLT of the Academy of Finland, EFFINANO of the Aalto University and is supported by the NOKIA Foundation, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Singh Chouhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, S.S., Halonen, K. A complete analysis and measurement results of the threshold voltage cancellation scheme for RF to DC converter. Analog Integr Circ Sig Process 87, 223–233 (2016). https://doi.org/10.1007/s10470-015-0630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0630-z

Keywords

Navigation