Skip to main content
Log in

A 22 nm FinFET based 6T-SRAM cell design with scaled supply voltage for increased read access time

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In ultra deep submicron technologies the process variation makes a vital impact on the design. The favorable device characteristic of FinFET avails them as a popular contender for a replacement of CMOS technologies. An optimal approach to increase the access time of a 6T-SRAM cell based on 22 nm FinFET technology is presented in this paper. The approach considers the statistical variation of supply voltage (Vdd) and their corresponding access time variation (read and write) due to technological transform. The spice code is developed and analyzed using HSPICE EDA tool. The simulation results of the read and write access time are evaluated using HSPICE and with Custom WaveView. The results show 11.057 and 12.233 ps for read and write access time at Vdd = 0.80 V which is the nominal voltage for 22 nm FinFET. The power consumption of the 6T-SRAM cell based on the proposed technique is 0.140 mW (at Vdd = 0.80 V) which is explored using Monte Carlo simulation in HSPICE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Lin, C. P., Tseng, P. C., Chiu, Y. T., Lin, S. S., Cheng, C. C., Fang, H. C., Chao, W.M., & Chen, L. G. (2006). A 5mW MPEG4 SP encoder with 2D bandwidth-sharing motion estimation for mobile applications. In IEEE International Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers.

  2. Alioto, M. (2012). Ultra-low power VLSI circuit design demystified and explained: A tutorial. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(1), 3–29.

    Article  MathSciNet  Google Scholar 

  3. Keerthi, R. & Chen, C. (2008). Stability and static noise margin analysis of low-power SRAM. In Instrumentation and Measurement Technology Conference Proceedings.

  4. Mukherjee, D., Mondal, H. K., & Reddy, B. V. R. (2010). Static noise margin analysis of SRAM cell for high speed application. IJCSI International Journal of Computer Science Issues, 7(5), 1–6.

    Google Scholar 

  5. Hodges, D.A., Jackson, H. G., & Saleh, R. A. (2003) Analysis and design of digital integrated circuits. Berkeley, McGraw Hill Science Engineering (pp. 3–118).

  6. ITRS: International technology roadmap for semiconductors, 2011.

  7. Chen, X., & Peh, L. S. (2003). Leakage power modeling and optimization in interconnection networks. In Proceedings of the 2003 International Symposium.

  8. Athe, P. & Dasgupta, S. (2009). A comparative study of 6T, 8T and 9T decanano SRAM cell. In IEEE Symposium on Industrial Electronics & Applications, 2009. ISIEA 2009.

  9. Ariannejad, M. M., IbneReaz, M. B., Amin, M. S., & Hashim, F. H. (2013). Design of an 8-cell dual port SRAM in 0.18-μm CMOS technology. Research Journal of Applied Sciences, Engineering and Technology, 5(8), 2565–2568.

    Google Scholar 

  10. Gupta, V., & Anis, M. (2010). Statistical design of the 6T SRAM bit cell. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(1), 93–104.

    Article  MathSciNet  Google Scholar 

  11. Mukhopadhyay, S., Mahmoodi, H., & Roy, K. (2008). Reduction of parametric failures in sub-100-nm SRAM array using body bias. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(1), 174–183.

    Article  Google Scholar 

  12. Agarwal, K., & Nassif, S. (2008). The impact of random device variation on SRAM cell stability in sub-90-nm CMOS technologies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 16(1), 86–97.

    Article  Google Scholar 

  13. Tang, S. H., Chang, L., Lindert, N., Choi, Y. K., Lee, W. C., Huang, X., et al. (2001). FinFET-a quasi-planar double-gate MOSFET. In Solid-State Circuits Conference (pp. 118–119).

  14. Oklobdzija, V. G., Villeger, D., & Liu, S. S. (1996). A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach. IEEE Transactions on Computers, 45(3), 294–306.

    Article  MATH  Google Scholar 

  15. Wang, Z., He, X., & Sechen, C. (2014). TonyChopper: A Desynchronization Package, ICCAD.

  16. Wang, Z., He, X., & Sechen, C. (2014). A new approach for gate-level delay-insensitive asynchronous logic. In Circuit, System and Signal Processing, ICCAD '14 Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design (pp. 1–29).

  17. Wang, Z., Pan, C., Song, Y., & Sechen, C. (2014). High-throughput digital IIR filter. Journal of Algorithms and Optimization, 2(2), 15–27.

    Google Scholar 

  18. Pan, C., Wang, Z., Song, Y., & Sechen, C. (2011). Power Efficient Partial Product Compression. In Great Lake Symposium on VLSI.

  19. Pan, C., Wang, Z., & Sechen, C. (2013). High speed and power efficient compression of partial products and vectors. Journal of Algorithms and Optimization, 1(1), 39–54.

    Google Scholar 

  20. Auth, C., Allen, C., Blattner, A., Bergstrom, D., Brazier, M., Bost, M., Buehler, M., Chikarmane, V., & Ghani (2012). A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors.In Symposium on VLSI Technology (VLSIT), pp.131–132. 12–14 June 2012.

  21. Thomas, O., Reyboz, M., & Belleville, M. (2007). Sub-1 V, robust and compact 6T SRAM cell in double gate MOS technology. In IEEE International Symposium.

  22. Shukla, N. K., Singh, R. K., & Pattanaik, M. (2011). Design and analysis of a novel low-power SRAM bit-cell structure at deep-sub-micron CMOS technology for mobile multimedia applications. International Journal of Advanced Computer Science and Applications, 2(5), 43–49.

    Google Scholar 

  23. Trivedi, V. P., & Fossum, J. G. (2005). Nanoscale FD/SOI CMOS: Thick or thin box? IEEE Electron Device Letters, 26(1), 26–28.

    Article  Google Scholar 

  24. Guo, Z., Balasubramanian, S., Zlatanovici, R., King, T. J., & Nikolić, B., et al. (2005). FinFET-based SRAM design. In Proceedings of the 2005 International Symposium.

  25. Predictive Technology Model Website, http://www.eas.asu.edu/~ptm/.

  26. Mukhopadhyay, S. (2005) Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(12).

  27. Kim, K., & Fossum, J. G. (2001). Double-gate CMOS: Symmetrical-versus asymmetrical-gate devices. IEEE Transactions on Electron Devices, 48(2), 294–299.

    Article  Google Scholar 

  28. Kim, K., Fossum, J.G., & Chuang, C. T. (2003). Physical compact model for threshold voltage in short-channel double-gate devices. In International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003.

  29. Sakurai, T., & Newton, A. R. (1991). Delay analysis of series-connected MOSFET circuits. IEEE Journal of Solid-State Circuits, 26(2), 122–131.

    Article  Google Scholar 

  30. Sentaurus Device Simulator from Synopsys Inc (2005). http://www.synopsys.com.

  31. Chowdhury, M. M., Trivedi, V. P., Fossum, J. G., & Mathew, L. (2007). Carrier mobility/transport in undoped-UTB DG FinFETs. IEEE Transactions on Electron Devices, 54(5), 1125–1131.

    Article  Google Scholar 

  32. Seevinck, E., List, F. J., & Lohstroh, J. (1987). Static-noise margin analysis of MOS SRAM cells. IEEE Journal of Solid-State Circuits, 22(5), 748–754.

    Article  Google Scholar 

  33. Bhavnagarwala, A., Kosonocky, S., Radens, C., Stawiasz, K., Mann, R., Ye, Q., et al. (2005). Fluctuation limits & scaling opportunities for CMOS SRAM cells. In IEEE International Electron Devices Meeting, IEDM Technical Digest (pp. 659–662)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Manju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manju, I., Senthil Kumar, A. A 22 nm FinFET based 6T-SRAM cell design with scaled supply voltage for increased read access time. Analog Integr Circ Sig Process 84, 119–126 (2015). https://doi.org/10.1007/s10470-015-0547-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0547-6

Keywords

Navigation