Skip to main content
Log in

A 10 Gb/s adaptive analog decision feedback equalizer for multimode fiber dispersion compensation in 0.13 \({\upmu }\)m CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A 10 Gb/s adaptive analog decision feedback equalizer with 6 taps is realized in 0.13 \(\upmu\)m CMOS. An analog implementation of the LMS algorithm is used to continuously adapt the feedback filter coefficients. A clock and data recovery circuit is used to extract the clock from the DFE output. The adaptive DFE dissipates 318 mW, not including output buffers, and can equalize PRBS data corrupted by a 300-m multimode fiber achieving BER \(< 10^{-13}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Physical Layer and Management Parameters for 10 Gb/s Operation, Type 10 GBASE-LRM, IEEE Standard 802.3AQ-2006, Sep. (2006).

  2. 10Gbps Fiber Channel Physical Interface Draft Standard, T11 project 1413-D, rev. 3.5, (2003).

  3. Wu, H., Tierno, J. A., Pepeljugoski, P., Schaub, J., Gowda, S., Kash, J. A., et al. (2003). Integrated transversal equalizers in high-speed fiber-optic systems. IEEE Journal of Solid-State Circuits, 38, 2131–2137.

    Article  Google Scholar 

  4. McPherson, D.S., et al. (2005). A 10 Gb, s adaptive equalizer with integrated clock and data recovery for optical transmission systems. In Optical Fiber Communications Conference, et al. 2005. Technical Digest. OFC/NFOEC, 5, (2005).

  5. Kasper, B. L. (1982). Equalization of multimode optical fiber systems. Bell System Technical Journal, 61(7), 1367–1388.

    Article  Google Scholar 

  6. Synopsys Optical Solutions. [Online]. Available: http://optics.synopsys.com/rsoft/rsoft-system-network-optsim.html.

  7. Agazzi, O. (2008). DSP-Based transceivers for electronic dispersion compensation of single-mode and multimode fibers, ISSCC 2008, Forum F5, Feb. (2008).

  8. Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260–269.

    Article  MATH  Google Scholar 

  9. Swenson, N.L. (2008). 10 Gb/s Optical Data Links With DSP-Based Dispersion Compensation, SE7-Trends and Challenges in Optical Communications Front-End, ISSCC 2008, Evening Session Panel Discussion, Feb. (2008).

  10. Gitlin, R. D., & Weinstein, S. B. (1981). Fractionally-spaced equalization: An improved digital transversal equalizer. Bell System Technical Journal, 60(2), 275–296.

    Article  Google Scholar 

  11. Winters, J., & Kasturia, S. (1992). Adaptive nonlinear cancellation for high-speed fiber-optic systems. IEEE Journal of Lightwave Technology, 10, 971–977.

    Article  Google Scholar 

  12. Poirrie, J., Gnauck, A., & Winters, J. (2000). Experimental nonlinear cancellation of polarization-mode dispersion. In Proceedings of Optical Fiber Communications Conference (vol. 3, pp. 119–121).

  13. Agazzi, O. E., & Gopinathan, V. (2004). The impact of nonlinearity on electronic dispersion compensation of optical channels. Proceedings Optical Fiber Communication Conference, 1, pp. 23–27.

  14. Personick, S. D. (1973). Baseband linearity and equalization in fiber optic digital communication systems. Bell System Technical Journal, 52(7), 1175–1194.

    Article  Google Scholar 

  15. Agazzi, O. E., Hueda, M. R., Carrer, H. S., & Crivelli, D. E. (2005). Maximum-likelihood sequence estimation in dispersive optical channels. IEEE Journal of Lightwave Technology, 23(2), 749–763.

    Article  Google Scholar 

  16. Winters, J. (1991). Constrained maximum-likelihood detection for high-speed fiber-optic systems. In Proceedings of GLOBCOM Dec. 1991 (vol. 3, pp. 1547–79), .

  17. Agazzi, O.E. (2000). 10 Gb/s PMD using PAM-5 Modulation, IEEE 802.3 High Speed Study Group, Jan. 18–20, 2000, Dallas, TX.

  18. Kargar, M., & Green, M. M. (2010). A 10 Gb/s adaptive analog decision feedback equalizer for multimode fiber dispersion compensation in 0.13\(\mu\)m CMOS. In Proceedings of European Solid-State Circuits Conference, 2010 (pp. 550–553).

  19. Mohtashemi, D. (2006). Effects of circuit non-idealities on the LMS algorithm, Master of Science Thesis, University of California, Irvine.

  20. Cherry, E. M., & Hooper, D. E. (1963). The design of wideband transistor feedback amplifiers. Proceedings of IEE, 110, 375–389.

    Google Scholar 

  21. Savoj, J., & Razavi, B. (2001). A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector. IEEE Journal of Solid-State Circuits, 36, 761–768.

    Article  Google Scholar 

  22. Galal, S., & Razavi, B. (2003). 10 Gb/s limiting amplifier and laser/modulator driver in in \(0.18-\mu\)m CMOS technology. IEEE Journal of Solid-State Circuits, 38, 2138–2146.

    Article  Google Scholar 

  23. Säckinger, E., & Fischer, W. C. (2000). A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 receivers. IEEE Journal of Solid-State Circuits, 35, 2058–2066.

    Google Scholar 

  24. Alexander, J. J. D. H. (1975). Clock recovery for random binary signals. Electronics Letters, 11, 541–542.

    Article  Google Scholar 

  25. Gondi, S., Lee, J., & Razavi, B. (2007). Equalization and clock and data recover technique for 10-Gb/s CMOS serial-link receivers. IEEE Journal of Solid-State Circuits, 42, 1999–2011.

    Article  Google Scholar 

  26. Choi, J., Hwang, M., & Jeong, D. (2004). A 0.18-\(\mu\)m CMOS 3.5-Gb/s continuous-time adaptive cable equalizer using enahanced low-frequency gain control method. IEEE Journal of Solid-State Circuits, 39, 419–425.

    Article  Google Scholar 

  27. Lui, H., Mohammed, I., Fan, Y., Morgan, M., & Liu, J. (2009). An HDMI cable equalizer with self-generated energy ratio adaptive scheme. IEEE Transactions on Circuits and Systems II, 56, 595–599.

    Article  Google Scholar 

  28. Lee, W.-Y., & Kim, L.-S. (2012). An adaptive equalizer with the capacitance multiplication for DisplayPort main link in 0.18-\(\mu\)m CMOS. IEEE Transactions on VLSI, 20, 964–968.

    Article  Google Scholar 

  29. Agruwal, A., Bulzacchelli, J., Dickson, T., & Liu, Y. (2012). A 19Gb/s serial link transceiver with both 4-tap FFE and 5-tap DFE functions in 45 nm SOI CMOS. IEEE Journal of Solid-State Circuits, 47, 3220–3231.

    Article  Google Scholar 

  30. Hwang, S., Jung, I., Song, J., & Kim, C. (2012). A 5.4Gb/s adaptive equalizer with unit pulse charging technique in 0.13 \(\mu\)m CMOS. In Proceedings of 2012 International Symposium on Circuits and Systems, May 2012 (pp. 1959–1962).

  31. Eshet, O., Ran, A., Mezer, A., Hadar, Y., Lazar, D., Moyal, M., et al. (2008). European Solid-State Circuits Conference Sept., (pp 178–181).

  32. Nee, H.-C., Tsai, C.-M., You, S.-K., Chen, W.-T. (2012). A 6Gb/s adaptive equalizer using overshoot control in 0.18 \(\mu\)m CMOS technology. In Proceedings of 2012 International Symposium on Circuits and Systems, May 2012 (pp. 1963–1966).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Green.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kargar, M., Khaliliadl, P. & Green, M.M. A 10 Gb/s adaptive analog decision feedback equalizer for multimode fiber dispersion compensation in 0.13 \({\upmu }\)m CMOS. Analog Integr Circ Sig Process 83, 271–283 (2015). https://doi.org/10.1007/s10470-015-0528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0528-9

Keywords

Navigation